Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand du...Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand during holidays and under unexpected events is also presented.Meanwhile,a computer software is developed.Through actual application,this method performs well and has high accuracy,so it can be applied to the daily operation of a water distribution system and lay a foundation for on-line optimal operation.展开更多
To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s...To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.展开更多
Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference ...Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference information for JE control and prevention. Methods Theoretically epidemiologic study was employed in the research process. Monthly incidence data on JE for the period from Jan 2005 to Sep 2014 were obtained from a passive surveillance system at the Center for Diseases Prevention and Control in Xianyang, Shaanxi province. An optimal SARIMA model was developed for JE incidence from 2005 to 2013 with the Box and Jenkins approach. This SARIMA model could predict JE incidence for the year 2014 and 2015. Results SARIMA (1, 1, 1) (2, 1, 1)12 was considered to be the best model with the lowest Bayesian information criterion, Akaike information criterion, Mean Absolute Error values, the highest R2, and a lower Mean Absolute Percent Error. SARIMA (1, 1, 1) (2, 1, 1)12 was stationary and accurate for predicting JE incidence in Xianyang. The predicted incidence, around 0.3/100 000 from June to August in 2014 with low errors, was higher compared with the actual incidence. Therefore, SARIMA (1, 1, 1) (2, 1, 1)12 appeared to be reliable and accurate and could be applied to incidence prediction. Conclusions The proposed prediction model could provide clues to early identification of the JE incidence that is increased abnormally (≥0.4/100 000). According to the predicted results in 2014, the JE incidence in Xianyang will decline slightly and reach its peak from June to August.The authors wish to thank the staff from the CDCs from 13 counties of Xianyang, Shaanxi province, China, for their contribution to Japanese encephalitis cases reporting.展开更多
基金Natural Science Foundation of China!(No.598780 30 )
文摘Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand during holidays and under unexpected events is also presented.Meanwhile,a computer software is developed.Through actual application,this method performs well and has high accuracy,so it can be applied to the daily operation of a water distribution system and lay a foundation for on-line optimal operation.
基金Project(2006BAC07B03) supported by the National Key Technology R & D Program of ChinaProject(2006G040-A) supported by the Foundation of the Science and Technology Section of Ministry of RailwayProject(2008yb044) supported by the Foundation of Excellent Doctoral Dissertation of Central South University
文摘To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.
基金Supported by the Youth Project of Shaanxi University of Chinese Medicine(2015QN05)
文摘Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference information for JE control and prevention. Methods Theoretically epidemiologic study was employed in the research process. Monthly incidence data on JE for the period from Jan 2005 to Sep 2014 were obtained from a passive surveillance system at the Center for Diseases Prevention and Control in Xianyang, Shaanxi province. An optimal SARIMA model was developed for JE incidence from 2005 to 2013 with the Box and Jenkins approach. This SARIMA model could predict JE incidence for the year 2014 and 2015. Results SARIMA (1, 1, 1) (2, 1, 1)12 was considered to be the best model with the lowest Bayesian information criterion, Akaike information criterion, Mean Absolute Error values, the highest R2, and a lower Mean Absolute Percent Error. SARIMA (1, 1, 1) (2, 1, 1)12 was stationary and accurate for predicting JE incidence in Xianyang. The predicted incidence, around 0.3/100 000 from June to August in 2014 with low errors, was higher compared with the actual incidence. Therefore, SARIMA (1, 1, 1) (2, 1, 1)12 appeared to be reliable and accurate and could be applied to incidence prediction. Conclusions The proposed prediction model could provide clues to early identification of the JE incidence that is increased abnormally (≥0.4/100 000). According to the predicted results in 2014, the JE incidence in Xianyang will decline slightly and reach its peak from June to August.The authors wish to thank the staff from the CDCs from 13 counties of Xianyang, Shaanxi province, China, for their contribution to Japanese encephalitis cases reporting.