In order to make a scientific pavement maintenance decision, a grey-theory-based prediction methodological framework is proposed to predict pavement performance. Based on the field pavement rutting data,analysis of va...In order to make a scientific pavement maintenance decision, a grey-theory-based prediction methodological framework is proposed to predict pavement performance. Based on the field pavement rutting data,analysis of variance (ANOVA)was first used to study the influence of different factors on pavement rutting. Cluster analysis was then employed to investigate the rutting development trend.Based on the clustering results,the grey theory was applied to build pavement rutting models for each cluster, which can effectively reduce the complexity of the predictive model.The results show that axial load and asphalt binder type play important roles in rutting development.The prediction model is capable of capturing the uncertainty in the pavement performance prediction process and can meet the requirements of highway pavement maintenance,and,therefore,has a wide application prospects.展开更多
There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and ...There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method.展开更多
A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical po...A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.展开更多
The method of commensurability was used by the authors to predict the great earthquake of magnitude 7.5 that occurred on March 31,2002 in Taiwan 70km away from Hualian. Analyzing the earthquakes of magnitude≥7.0 whic...The method of commensurability was used by the authors to predict the great earthquake of magnitude 7.5 that occurred on March 31,2002 in Taiwan 70km away from Hualian. Analyzing the earthquakes of magnitude≥7.0 which occurred in the Hualian area of Taiwan within the 20th century, the authors discovered that the occurrences of the earthquakes are commensurable. The earthquakes of magnitude 7.6 which occurred in Hualian of Taiwan, on September 20th, 1999 and of magnitude 7.5 which occurred 70 km away from Hualian, on March 31th, 2002 appeared at the commensurable point of K=2 and the period times the golden section, respectively. An extended discussion is carried out on the method of commensurability and its implied physical significance, especially on the contribution of the commensurable periodic extension made by Prof. Weng Wenbo.展开更多
Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. First...Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio.展开更多
The Support Vector Machine (SVM) method can be used to set up a nonlinear function prediction model. It is based on the small sample learning theory. The kernel function can be constructed automatically based on the...The Support Vector Machine (SVM) method can be used to set up a nonlinear function prediction model. It is based on the small sample learning theory. The kernel function can be constructed automatically based on the actual sample data by using the SVM method. As a result, the function not only gets a higher fit precision but is also better generalized. The frequency spectrum and seismic waveform are related by Fourier transform, so they are two different forms of the same physical phenomenon. The variety of waveform character reflects stratigraphic differences and frequency spectrum differences reflect the variation of lithology, fluid composition, and formation thickness. It directly predicts sandstone thickness using the seismic waveform. This not only fully utilizes the seismic information but also greatly increases the accuracy of the prediction. Model examples and actual applications show the applicability of this method.展开更多
D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated...D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible.展开更多
With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the...With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.展开更多
The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were ...The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were investigated through the analyses of the spatio-temporal distribution of hypocenters,apparent stress and displacement of seismic events,and the process of the generation of hazardous seismicity in DCM was studied in the framework of the theory of asperity in the seismic source mechanism.A method of locating areas with hazardous seismicity and a conceptual model of hazardous seismic nucleation in DCM were proposed.A criterion of rockburst prediction was analyzed theoretically in the framework of unstable failure theories,and consequently,the rate of change in the ratio of the seismic stiffness of rock in a seismic nucleation area to that in surrounding area,dS/dt,is defined as an index of the rockburst prediction.The possibility of a rockburst will increase if dS/dt>0,and the possibility of rock burst will decrease if dS/dt<0.The correctness of these methods is demonstrated by analyses of rock failure cases in DCM.展开更多
Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was ...Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was examined for rockburst prediction in burst-prone mines by three tree-based ensemble methods.The dataset was examined with six widely accepted indices which are:the maximum tangential stress around the excavation boundary(MTS),uniaxial compressive strength(UCS)and uniaxial tensile strength(UTS)of the intact rock,stress concentration factor(SCF),rock brittleness index(BI),and strain energy storage index(EEI).Two boosting(AdaBoost.M1,SAMME)and bagging algorithms with classification trees as baseline classifier on ability to learn rockburst were evaluated.The available dataset was randomly divided into training set(2/3 of whole datasets)and testing set(the remaining datasets).Repeated 10-fold cross validation(CV)was applied as the validation method for tuning the hyper-parameters.The margin analysis and the variable relative importance were employed to analyze some characteristics of the ensembles.According to 10-fold CV,the accuracy analysis of rockburst dataset demonstrated that the best prediction method for the potential of rockburst is bagging when compared to AdaBoost.M1,SAMME algorithms and empirical criteria methods.展开更多
Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and time...Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and timely forecast about water bursts. Based on the smoke ring effect of transient electromagnetic fields,the principle of transient electro-magnetic method used in detecting buried water-bearing structures in coal mines in advance,is discussed. Small multi-turn loop configurations used in coal mines are proposed and a field procedure of semicircular sector scanning is presented. The application of this method in one coal mine indicates that the technology has many advantages compared with others. The method is inexpensive,highly accurate and efficient. Suggestions are presented for future solutions to some remaining problems.展开更多
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq...A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).展开更多
This paper proposes a novel method to predict the spur gear pair’s static transmission error based on the accuracy grade,in which manufacturing errors(MEs),assembly errors(AEs),tooth deflections(TDs)and profile modif...This paper proposes a novel method to predict the spur gear pair’s static transmission error based on the accuracy grade,in which manufacturing errors(MEs),assembly errors(AEs),tooth deflections(TDs)and profile modifications(PMs)are considered.For the prediction,a discrete gear model for generating the error tooth profile based on the ISO accuracy grade is presented.Then,the gear model and a tooth deflection model for calculating the tooth compliance on gear meshing are coupled with the transmission error model to make the prediction by checking the interference status between gear and pinion.The prediction method is validated by comparison with the experimental results from the literature,and a set of cases are simulated to study the effects of MEs,AEs,TDs and PMs on the static transmission error.In addition,the time-varying backlash caused by both MEs and AEs,and the contact ratio under load conditions are also investigated.The results show that the novel method can effectively predict the range of the static transmission error under different accuracy grades.The prediction results can provide references for the selection of gear design parameters and the optimization of transmission performance in the design stage of gear systems.展开更多
The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real ...The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real time intelligent environment,and a new modified Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. The modified BFGS algorithm for the adaptive learning of back propagation (BP) neural networks is developed and embedded into NeurOn-Line by introducing a new search method of learning rate to the full memory BFGS algorithm. Simulation results show that the adaptive learning and prediction neural network system can quicklv track the time-varving and nonlinear behavior of the bioreactor.展开更多
As a powerful tool to diagnose vertical motion, frontogenesis, and secondary circulation, the Q vector and its divergence are widely used. However, little attention has been given to the curl of Q vector. In this pape...As a powerful tool to diagnose vertical motion, frontogenesis, and secondary circulation, the Q vector and its divergence are widely used. However, little attention has been given to the curl of Q vector. In this paper, a new set of analyses combining the divergence of the Q vector (DQ) with the vertical component of the curl of the Q vector (VQ) is applied to a Northeastern cold vortex rainfall case. From the derivation, it was found that the expressions of the Q vectors and their divergences in saturated moist flow (DQm) differ from those of dry and unsaturated moist atmosphere (DQ), while the VQs of various background flows are exactly the same, which largely simplified the analyses. This case study showed that, compared with the DQ, not only can the DQm diagnose precipitation more effectively, but the VQ may also be indicative of precipitation (especially for heavy rainfall and strong convection) because of its direct, close relationship with ageostrophic motion. Thus, the VQ may be computed and analyzed with ease, and may serve as a useful tool for analyses of precipitation and strong convective svstems.展开更多
Debris flows have caused serious human casualties and economic losses in the regions strongly affected by the Ms8.0 Wenchuan earthquake of 2oo8. Debris flow mitigation and risk assessment is a key issue for reconstruc...Debris flows have caused serious human casualties and economic losses in the regions strongly affected by the Ms8.0 Wenchuan earthquake of 2oo8. Debris flow mitigation and risk assessment is a key issue for reconstruction. The existing methods of inundation simulation are based on historical disasters and have no power of prediction. The rain- flood method can not yield detailed flow hydrograph and does not meet the need of inundation simulation. In this paper, the process of water flow was studied by using the Arc-SCS model combined with hydraulic method, and then the debris flow runoff process was calculated using the empirical formula combining the result from Arc-SCS. The peak discharge and runoff duration served as input of inundation simulation. Then, the dangerous area is predicted using kinematic wave method and Manning equation. Taking the debris flow in Huashiban gully in Beichuan County, Sichuan Province, China on 24 Sep. 2oo8 as example, the peak discharge of water flow and debris flow were calculated as 35.52 m3·s-1 and 215.66 m3·s-, with error of 4.15% compared to the measured values. The simulated area of debris-flow deposition was 161,500 m2, vs. the measured area of 144,097 m2, in error of 81.75%. The simulated maximum depth was 12.3 m, consistent with the real maximum depth between lO and 15 m according to the field survey. The minor error is mainly due to the flow impact on buildings and variations in cross-section configuration. The present methodology can be applied to predict debrisflow magnitude and evaluate its risk in other watersheds inthe earthquake area.展开更多
Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin ...Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability.展开更多
基金The Major Scientific and Technological Special Project of Jiangsu Provincial Communications Department(No.2011Y/02-G1)
文摘In order to make a scientific pavement maintenance decision, a grey-theory-based prediction methodological framework is proposed to predict pavement performance. Based on the field pavement rutting data,analysis of variance (ANOVA)was first used to study the influence of different factors on pavement rutting. Cluster analysis was then employed to investigate the rutting development trend.Based on the clustering results,the grey theory was applied to build pavement rutting models for each cluster, which can effectively reduce the complexity of the predictive model.The results show that axial load and asphalt binder type play important roles in rutting development.The prediction model is capable of capturing the uncertainty in the pavement performance prediction process and can meet the requirements of highway pavement maintenance,and,therefore,has a wide application prospects.
文摘There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method.
基金sponsored by Important National Science and Technology Specifi c Projects of China (No.2011ZX05001)
文摘A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.
基金This work was supported by the Nation’s Natural Science Found of China (No.10373017) and the Chinese Astronomical Committee Foundation.
文摘The method of commensurability was used by the authors to predict the great earthquake of magnitude 7.5 that occurred on March 31,2002 in Taiwan 70km away from Hualian. Analyzing the earthquakes of magnitude≥7.0 which occurred in the Hualian area of Taiwan within the 20th century, the authors discovered that the occurrences of the earthquakes are commensurable. The earthquakes of magnitude 7.6 which occurred in Hualian of Taiwan, on September 20th, 1999 and of magnitude 7.5 which occurred 70 km away from Hualian, on March 31th, 2002 appeared at the commensurable point of K=2 and the period times the golden section, respectively. An extended discussion is carried out on the method of commensurability and its implied physical significance, especially on the contribution of the commensurable periodic extension made by Prof. Weng Wenbo.
文摘Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio.
文摘The Support Vector Machine (SVM) method can be used to set up a nonlinear function prediction model. It is based on the small sample learning theory. The kernel function can be constructed automatically based on the actual sample data by using the SVM method. As a result, the function not only gets a higher fit precision but is also better generalized. The frequency spectrum and seismic waveform are related by Fourier transform, so they are two different forms of the same physical phenomenon. The variety of waveform character reflects stratigraphic differences and frequency spectrum differences reflect the variation of lithology, fluid composition, and formation thickness. It directly predicts sandstone thickness using the seismic waveform. This not only fully utilizes the seismic information but also greatly increases the accuracy of the prediction. Model examples and actual applications show the applicability of this method.
基金supported by the National Basic Research Program of China (973 Program) (No. 2009CB219603)Key Special National Project (No. 2008ZX05035)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible.
基金sponsored by the National Nature Science Foundation of China (Grant No.40904034 and 40839905)
文摘With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.
基金Project(2010CB732004) supported by the National Basic Research Program of ChinaProject(50490274) supported by the National Natural Science Foundation of China
文摘The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were investigated through the analyses of the spatio-temporal distribution of hypocenters,apparent stress and displacement of seismic events,and the process of the generation of hazardous seismicity in DCM was studied in the framework of the theory of asperity in the seismic source mechanism.A method of locating areas with hazardous seismicity and a conceptual model of hazardous seismic nucleation in DCM were proposed.A criterion of rockburst prediction was analyzed theoretically in the framework of unstable failure theories,and consequently,the rate of change in the ratio of the seismic stiffness of rock in a seismic nucleation area to that in surrounding area,dS/dt,is defined as an index of the rockburst prediction.The possibility of a rockburst will increase if dS/dt>0,and the possibility of rock burst will decrease if dS/dt<0.The correctness of these methods is demonstrated by analyses of rock failure cases in DCM.
基金Projects(41807259,51604109)supported by the National Natural Science Foundation of ChinaProject(2020CX040)supported by the Innovation-Driven Project of Central South University,ChinaProject(2018JJ3693)supported by the Natural Science Foundation of Hunan Province,China。
文摘Rockburst prediction is of vital significance to the design and construction of underground hard rock mines.A rockburst database consisting of 102 case histories,i.e.,1998−2011 period data from 14 hard rock mines was examined for rockburst prediction in burst-prone mines by three tree-based ensemble methods.The dataset was examined with six widely accepted indices which are:the maximum tangential stress around the excavation boundary(MTS),uniaxial compressive strength(UCS)and uniaxial tensile strength(UTS)of the intact rock,stress concentration factor(SCF),rock brittleness index(BI),and strain energy storage index(EEI).Two boosting(AdaBoost.M1,SAMME)and bagging algorithms with classification trees as baseline classifier on ability to learn rockburst were evaluated.The available dataset was randomly divided into training set(2/3 of whole datasets)and testing set(the remaining datasets).Repeated 10-fold cross validation(CV)was applied as the validation method for tuning the hyper-parameters.The margin analysis and the variable relative importance were employed to analyze some characteristics of the ensembles.According to 10-fold CV,the accuracy analysis of rockburst dataset demonstrated that the best prediction method for the potential of rockburst is bagging when compared to AdaBoost.M1,SAMME algorithms and empirical criteria methods.
基金Project 40674074 supported by the National Natural Science Foundation of China20050290501 by the Specialized Research Fund for the Doctoral Programof Higher EducationD200409 by the Scientific Research Fund for Youth of China University of Mining & Technology
文摘Buried water-conducting and water-bearing structures in front of the driving head may easily lead to water bursts in coal mines. Therefore,it is very important for the safety of production to make an accurate and timely forecast about water bursts. Based on the smoke ring effect of transient electromagnetic fields,the principle of transient electro-magnetic method used in detecting buried water-bearing structures in coal mines in advance,is discussed. Small multi-turn loop configurations used in coal mines are proposed and a field procedure of semicircular sector scanning is presented. The application of this method in one coal mine indicates that the technology has many advantages compared with others. The method is inexpensive,highly accurate and efficient. Suggestions are presented for future solutions to some remaining problems.
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1).
基金Project(51675061)supported by the National Natural Science Foundation of China。
文摘This paper proposes a novel method to predict the spur gear pair’s static transmission error based on the accuracy grade,in which manufacturing errors(MEs),assembly errors(AEs),tooth deflections(TDs)and profile modifications(PMs)are considered.For the prediction,a discrete gear model for generating the error tooth profile based on the ISO accuracy grade is presented.Then,the gear model and a tooth deflection model for calculating the tooth compliance on gear meshing are coupled with the transmission error model to make the prediction by checking the interference status between gear and pinion.The prediction method is validated by comparison with the experimental results from the literature,and a set of cases are simulated to study the effects of MEs,AEs,TDs and PMs on the static transmission error.In addition,the time-varying backlash caused by both MEs and AEs,and the contact ratio under load conditions are also investigated.The results show that the novel method can effectively predict the range of the static transmission error under different accuracy grades.The prediction results can provide references for the selection of gear design parameters and the optimization of transmission performance in the design stage of gear systems.
文摘The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real time intelligent environment,and a new modified Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. The modified BFGS algorithm for the adaptive learning of back propagation (BP) neural networks is developed and embedded into NeurOn-Line by introducing a new search method of learning rate to the full memory BFGS algorithm. Simulation results show that the adaptive learning and prediction neural network system can quicklv track the time-varving and nonlinear behavior of the bioreactor.
基金supported by the National Natural Science Foundation of China under the Grants Nos. 40633016 and 40433007
文摘As a powerful tool to diagnose vertical motion, frontogenesis, and secondary circulation, the Q vector and its divergence are widely used. However, little attention has been given to the curl of Q vector. In this paper, a new set of analyses combining the divergence of the Q vector (DQ) with the vertical component of the curl of the Q vector (VQ) is applied to a Northeastern cold vortex rainfall case. From the derivation, it was found that the expressions of the Q vectors and their divergences in saturated moist flow (DQm) differ from those of dry and unsaturated moist atmosphere (DQ), while the VQs of various background flows are exactly the same, which largely simplified the analyses. This case study showed that, compared with the DQ, not only can the DQm diagnose precipitation more effectively, but the VQ may also be indicative of precipitation (especially for heavy rainfall and strong convection) because of its direct, close relationship with ageostrophic motion. Thus, the VQ may be computed and analyzed with ease, and may serve as a useful tool for analyses of precipitation and strong convective svstems.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2011CB409902)the National Natural Sciences Foundation of China(Grant No. 40671025)
文摘Debris flows have caused serious human casualties and economic losses in the regions strongly affected by the Ms8.0 Wenchuan earthquake of 2oo8. Debris flow mitigation and risk assessment is a key issue for reconstruction. The existing methods of inundation simulation are based on historical disasters and have no power of prediction. The rain- flood method can not yield detailed flow hydrograph and does not meet the need of inundation simulation. In this paper, the process of water flow was studied by using the Arc-SCS model combined with hydraulic method, and then the debris flow runoff process was calculated using the empirical formula combining the result from Arc-SCS. The peak discharge and runoff duration served as input of inundation simulation. Then, the dangerous area is predicted using kinematic wave method and Manning equation. Taking the debris flow in Huashiban gully in Beichuan County, Sichuan Province, China on 24 Sep. 2oo8 as example, the peak discharge of water flow and debris flow were calculated as 35.52 m3·s-1 and 215.66 m3·s-, with error of 4.15% compared to the measured values. The simulated area of debris-flow deposition was 161,500 m2, vs. the measured area of 144,097 m2, in error of 81.75%. The simulated maximum depth was 12.3 m, consistent with the real maximum depth between lO and 15 m according to the field survey. The minor error is mainly due to the flow impact on buildings and variations in cross-section configuration. The present methodology can be applied to predict debrisflow magnitude and evaluate its risk in other watersheds inthe earthquake area.
文摘Petroleum geophysicists recognize that many parameters related to oil and gas reservoirs are predicted using seismic attribute data. However, how best to optimize the seismic attributes, predict the character of thin sandstone reservoirs, and enhance the reservoir description accuracy is an important goal for geologists and geophysicists. Based on the theory of main component analysis, we present a new optimization method, called constrained main component analysis. Modeling estimates and real application in an oilfield show that it can enhance reservoir prediction accuracy and has better applicability.