由于页岩气渗流机理复杂,赋存方式多样,压裂后对裂缝网络的精确识别和表征存在较大困难,现有方法难以准确预测页岩气井产量。为此,提出了机理—数据融合建模的思路,结合连续拟稳态假设、物质平衡方程、产量递减分析方法和递推原理,建立...由于页岩气渗流机理复杂,赋存方式多样,压裂后对裂缝网络的精确识别和表征存在较大困难,现有方法难以准确预测页岩气井产量。为此,提出了机理—数据融合建模的思路,结合连续拟稳态假设、物质平衡方程、产量递减分析方法和递推原理,建立了物理—数据协同驱动的产量预测方法,进而以中国某区块页岩气井现场生产数据为例,对该方法的准确性、可靠性进行了测试,并与经验产量递减分析和时间序列分析方法进行了对比分析。研究结果表明:(1)建立的产能模型采用拟压力代替压力,采用物质平衡拟时间代替时间,弱化了产量、流压和甲烷物性变化带来的影响;(2)以累计产量误差最小为目标开展历史拟合,弱化了生产制度变化带来的影响,使得建立的产能模型能够自动适应流压—产量变化;(3)应用该方法的关键在于采气指数—物质平衡拟时间双对数图中的特征直线,若图中出现特征直线,则可以开展产量预测,反之,则不能预测。结论认为:(1)建立的产量预测方法将不稳定流动问题转化为拟稳态流动问题求解,简化了对储层非均质性的描述,避开了裂缝网络精确识别和定量表征的难题,计算效率高,可解释性强;(2)生产数据测试结果表明该产量预测方法精度高,长期预测结果稳定,并优于Logistic Growth Model、Duong和StretchedExponential Production Decline经验产量递减分析方法,也优于非线性自回归神经网络、长短记忆神经网络时间序列分析方法。展开更多
各行业规模化产量分析对产能建设和生产计划调度有着重要的指导意义。各行业生产产量数据为时间序列,针对现有的时间序列预测模型存在滞后性、模态混叠等缺点,提出一种基于EEMD-LSTM-BLS产量预测组合模型。模型首先利用集合经验模态分解...各行业规模化产量分析对产能建设和生产计划调度有着重要的指导意义。各行业生产产量数据为时间序列,针对现有的时间序列预测模型存在滞后性、模态混叠等缺点,提出一种基于EEMD-LSTM-BLS产量预测组合模型。模型首先利用集合经验模态分解(Ensemble Empirical Modal Decomposition,EEMD)将原始产量分解成更加平滑的子序列,可以减小噪声的影响提高预测准确性;再将分解后的子序列分别输入到长短时记忆-宽度学习系统(Long Short Term Memory-Broad Learning System,LSTM-BLS)中训练,利用BLS来解决LSTM预测中的滞后性。为了验证模型有效性,以某卷烟厂产量进行实例分析。通过与基线模型以及现有模型比较,验证提出的模型能更有效、准确的预测产量,为车间生产计划调度提供了便捷有效的方法。展开更多
文摘由于页岩气渗流机理复杂,赋存方式多样,压裂后对裂缝网络的精确识别和表征存在较大困难,现有方法难以准确预测页岩气井产量。为此,提出了机理—数据融合建模的思路,结合连续拟稳态假设、物质平衡方程、产量递减分析方法和递推原理,建立了物理—数据协同驱动的产量预测方法,进而以中国某区块页岩气井现场生产数据为例,对该方法的准确性、可靠性进行了测试,并与经验产量递减分析和时间序列分析方法进行了对比分析。研究结果表明:(1)建立的产能模型采用拟压力代替压力,采用物质平衡拟时间代替时间,弱化了产量、流压和甲烷物性变化带来的影响;(2)以累计产量误差最小为目标开展历史拟合,弱化了生产制度变化带来的影响,使得建立的产能模型能够自动适应流压—产量变化;(3)应用该方法的关键在于采气指数—物质平衡拟时间双对数图中的特征直线,若图中出现特征直线,则可以开展产量预测,反之,则不能预测。结论认为:(1)建立的产量预测方法将不稳定流动问题转化为拟稳态流动问题求解,简化了对储层非均质性的描述,避开了裂缝网络精确识别和定量表征的难题,计算效率高,可解释性强;(2)生产数据测试结果表明该产量预测方法精度高,长期预测结果稳定,并优于Logistic Growth Model、Duong和StretchedExponential Production Decline经验产量递减分析方法,也优于非线性自回归神经网络、长短记忆神经网络时间序列分析方法。
文摘各行业规模化产量分析对产能建设和生产计划调度有着重要的指导意义。各行业生产产量数据为时间序列,针对现有的时间序列预测模型存在滞后性、模态混叠等缺点,提出一种基于EEMD-LSTM-BLS产量预测组合模型。模型首先利用集合经验模态分解(Ensemble Empirical Modal Decomposition,EEMD)将原始产量分解成更加平滑的子序列,可以减小噪声的影响提高预测准确性;再将分解后的子序列分别输入到长短时记忆-宽度学习系统(Long Short Term Memory-Broad Learning System,LSTM-BLS)中训练,利用BLS来解决LSTM预测中的滞后性。为了验证模型有效性,以某卷烟厂产量进行实例分析。通过与基线模型以及现有模型比较,验证提出的模型能更有效、准确的预测产量,为车间生产计划调度提供了便捷有效的方法。