节点定位技术是无线传感器网络的关键问题之一,分析了无线电的路径损耗模型,建立了基于信号接收强度(received signal strength indicator,RSSI)和距离的拟合关系模型,提出了一种基于协同预测的无线传感器网络全移动节点定位方法。该方...节点定位技术是无线传感器网络的关键问题之一,分析了无线电的路径损耗模型,建立了基于信号接收强度(received signal strength indicator,RSSI)和距离的拟合关系模型,提出了一种基于协同预测的无线传感器网络全移动节点定位方法。该方法解决了当能够与未知节点通信的锚节点数量少于三个而不能定位的问题,算法利用未知节点历史时刻的位置信息辅助当前时刻的未知节点定位,即把未知节点历史时刻的位置作为锚节点的位置,速度值作为通信半径对未知节点进行辅助定位。仿真结果表明,与传统RSSI定位算法相比,该算法的定位成功率提高了约30%,每轮的平均相对误差降低了约47%。展开更多
目前已有的位置指纹室内定位算法大多都是建立在原始指纹数据库的基础上,指纹数据库的建立精度会直接影响到最后的定位精度,因此在基于WiFi的定位技术中,对接收信号强度(received signal strength indication,RSSI)的稳定性要求比较高...目前已有的位置指纹室内定位算法大多都是建立在原始指纹数据库的基础上,指纹数据库的建立精度会直接影响到最后的定位精度,因此在基于WiFi的定位技术中,对接收信号强度(received signal strength indication,RSSI)的稳定性要求比较高。通过对指纹数据的研究,提出了一种基于高斯核函数融合卡尔曼滤波对数据进行预处理的方法。实验证明,该融合算法能有效剔除RSSI指纹数据中的突变数据和噪声波动,实现RSSI值的准确、平滑输出,从而建立准确的指纹数据库,使后期的定位结果更加精确。展开更多
针对传统的基于WiFi的最近邻(K-nearest neighbor algorithm,WiFi-KNN)室内定位算法精确度不能达到精准定位的需求的问题,本文提出了一种基于位置范围限定的K近邻(K-nearest neighbor based on the location range limit,LRLKNN)室内定...针对传统的基于WiFi的最近邻(K-nearest neighbor algorithm,WiFi-KNN)室内定位算法精确度不能达到精准定位的需求的问题,本文提出了一种基于位置范围限定的K近邻(K-nearest neighbor based on the location range limit,LRLKNN)室内定位算法。LRL-KNN算法通过利用用户的先前位置与WiFi指纹数据库中的参考点位置之间的物理距离组成的相关范围因子来缩放指纹距离,以此来减少定位的空间歧义性。尽管利用了先前的位置,但是该算法并不需要知道用户的确切移动速度和方向。与此同时,考虑到WiFi接收信号强度的时间波动性,将RSS直方图合并到距离计算中来减小时间波动带来的影响。实验结果表明:传统KNN算法的平均定位误差为2.13 m,新算法的平均定位误差为1.80 m,该误差在相同的测试环境下比传统的KNN算法减少15%。展开更多
针对基于接收信号强度的位置指纹室内定位算法定位精度不高的问题,提出了一种均值层次聚类和自适应加权K近邻(weighted K nearest neighbor,WKNN)的室内定位算法。算法首先在设置的参考点上采集蓝牙信号强度构建离线指纹数据库,然后采...针对基于接收信号强度的位置指纹室内定位算法定位精度不高的问题,提出了一种均值层次聚类和自适应加权K近邻(weighted K nearest neighbor,WKNN)的室内定位算法。算法首先在设置的参考点上采集蓝牙信号强度构建离线指纹数据库,然后采用均值层次聚类方法将所有参考点根据各自之间的相似度分为n个类,滤除掉相似度较小的参考点,最后根据待定位点和参考点间的信号距离的相似度,计算出距离差的标准差来自适应确定K值,并进行位置估算。实验结果表明,本文提出的算法在定位精度上比WKNN、动态加权K近邻(enhanced weighted K nearest neighbor,EWKNN)方法分别提升了30.0%和18.0%,在定位实时性上比WKNN和EWKNN方法分别提高了19.2%和28.4%。将该算法用于室内物体定位,可以同时提高定位精度和定位实时性。展开更多
文摘节点定位技术是无线传感器网络的关键问题之一,分析了无线电的路径损耗模型,建立了基于信号接收强度(received signal strength indicator,RSSI)和距离的拟合关系模型,提出了一种基于协同预测的无线传感器网络全移动节点定位方法。该方法解决了当能够与未知节点通信的锚节点数量少于三个而不能定位的问题,算法利用未知节点历史时刻的位置信息辅助当前时刻的未知节点定位,即把未知节点历史时刻的位置作为锚节点的位置,速度值作为通信半径对未知节点进行辅助定位。仿真结果表明,与传统RSSI定位算法相比,该算法的定位成功率提高了约30%,每轮的平均相对误差降低了约47%。
文摘目前已有的位置指纹室内定位算法大多都是建立在原始指纹数据库的基础上,指纹数据库的建立精度会直接影响到最后的定位精度,因此在基于WiFi的定位技术中,对接收信号强度(received signal strength indication,RSSI)的稳定性要求比较高。通过对指纹数据的研究,提出了一种基于高斯核函数融合卡尔曼滤波对数据进行预处理的方法。实验证明,该融合算法能有效剔除RSSI指纹数据中的突变数据和噪声波动,实现RSSI值的准确、平滑输出,从而建立准确的指纹数据库,使后期的定位结果更加精确。
文摘针对传统的基于WiFi的最近邻(K-nearest neighbor algorithm,WiFi-KNN)室内定位算法精确度不能达到精准定位的需求的问题,本文提出了一种基于位置范围限定的K近邻(K-nearest neighbor based on the location range limit,LRLKNN)室内定位算法。LRL-KNN算法通过利用用户的先前位置与WiFi指纹数据库中的参考点位置之间的物理距离组成的相关范围因子来缩放指纹距离,以此来减少定位的空间歧义性。尽管利用了先前的位置,但是该算法并不需要知道用户的确切移动速度和方向。与此同时,考虑到WiFi接收信号强度的时间波动性,将RSS直方图合并到距离计算中来减小时间波动带来的影响。实验结果表明:传统KNN算法的平均定位误差为2.13 m,新算法的平均定位误差为1.80 m,该误差在相同的测试环境下比传统的KNN算法减少15%。
文摘针对基于接收信号强度的位置指纹室内定位算法定位精度不高的问题,提出了一种均值层次聚类和自适应加权K近邻(weighted K nearest neighbor,WKNN)的室内定位算法。算法首先在设置的参考点上采集蓝牙信号强度构建离线指纹数据库,然后采用均值层次聚类方法将所有参考点根据各自之间的相似度分为n个类,滤除掉相似度较小的参考点,最后根据待定位点和参考点间的信号距离的相似度,计算出距离差的标准差来自适应确定K值,并进行位置估算。实验结果表明,本文提出的算法在定位精度上比WKNN、动态加权K近邻(enhanced weighted K nearest neighbor,EWKNN)方法分别提升了30.0%和18.0%,在定位实时性上比WKNN和EWKNN方法分别提高了19.2%和28.4%。将该算法用于室内物体定位,可以同时提高定位精度和定位实时性。