In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f...In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.展开更多
A new correlation for the prediction of gas hold up in bubble columns was proposed based on an extensive experimental database set up from the literature published over last 30 years. The updated estimation method rel...A new correlation for the prediction of gas hold up in bubble columns was proposed based on an extensive experimental database set up from the literature published over last 30 years. The updated estimation method relying on artificial neural network, dimensional analysis and phenomenological approaches was used and the model prediction agreed with the experimental data with average relative error less than 10%.展开更多
This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vege...This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision.展开更多
Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in...Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in which the optimization is infeasible. But it can only deal with soft constraints. In order to deal with hard constraints and guarantee feasibility, an improved algorithm is proposed by recalculating the setpoint according to the hard constraints before calculating the manipulated variable and MWLS algorithm is used to satisfy the requirement of soft constraints for the system with the input constraints and output constraints. The algorithm can not only guarantee stability of the system and zero steady state error, but also satisfy the hard constraints of input and output variables. The simulation results show the improved algorithm is feasible and effective.展开更多
In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring meth...In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring method was proposed in this study,and the major steps of the monitoring method include:firstly,time-series images of the similarity model in the test were obtained by a camera,and secondly,measuring points marked as artificial targets were automatically tracked and recognized from time-series images.Finally,the real-time plane displacement field was calculated by the fixed magnification between objects and images under the specific conditions.And then the application device of the method was designed and tested.At the same time,a sub-pixel location method and a distortion error model were used to improve the measuring accuracy.The results indicate that this method may record the entire test,especially the detailed non-uniform deformation and sudden deformation.Compared with traditional methods this method has a number of advantages,such as greater measurement accuracy and reliability,less manual intervention,higher automation,strong practical properties,much more measurement information and so on.展开更多
The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boul...The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine,Iran was predicted via multiple regression method and artificial neural networks.Results of 33 blasts in the mine were collected for modeling.Input variables were:joints spacing,density and uniaxial compressive strength of the intact rock,burden,spacing,stemming,bench height to burden ratio,and specific charge.The dependent variable was ratio of boulder volume to pattern volume.Both techniques were successful in predicting the ratio.In this study,the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19,respectively.展开更多
An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accur...An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation(BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand(gross domestic product(GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand(population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.展开更多
Objective: Hemolysis in blood pumps has been measured by various in vitro test methods, in which normalized index of hemolysis (NIH) was established. As NIH is complicated and difficult to calculate, erythrocyte fr...Objective: Hemolysis in blood pumps has been measured by various in vitro test methods, in which normalized index of hemolysis (NIH) was established. As NIH is complicated and difficult to calculate, erythrocyte fragment count is proposed in the present study to predict hemolysis in roller pumps. Methods: Five paired in vitro tests were conducted using the POLYSTAN pediatric pump(group A) and COBE pump( group B). Ten whole blood samples (400 ml ) were circled in the roller pump for 16 h. Erythrocyte fragments count and plasma-free hemoglobin (FHb) were measured before pumping and every two hours through circulation after four-hour-pumping. The morphological changes of erythrocyte were observed by scanning electron microscope. Results: The two groups' EFC and FHb levels were increased linearly during a long duration of pumping and linear regression of erythrocyte fragments count and plasma-free hemoglobin were correlated. Conclusion: Erythrocyte fragments count could be used as an index in evaluating the in vitro hemolytic properties of blood pumps.展开更多
One of the problems encountered in the operation of a leachate treatment in a landfill is the quantity of the fluctuating leachate. Therefore, information on the precise prediction about the quantity of leachate produ...One of the problems encountered in the operation of a leachate treatment in a landfill is the quantity of the fluctuating leachate. Therefore, information on the precise prediction about the quantity of leachate produced in a landfill is required. This information can be obtained by using an ANN (artificial neural networks) model. In this study, a prediction on a leachate generation for a period of 15 days was made. The input for the ANN model consists of data such as rainfall, temperature, humidity, duration of solar radiation, and the landfill characteristics, while the output is the leachate landfills production in Minamiashigara, Japan. The ANN algorithm uses a BP (back propagation) with LM (Levenberg-Marquadrt) training type. By using the input-output data pairs, the training of ANN model was conducted in order to obtain the values of the weights that describe the relationship between the input-output data. Furthermore, with the trained ANN model, the prediction of leachate generation for a period of 15 days was made. The study result shows that the prediction accuracy ofleachate generation of ANN-C model, with a correlation coefficient (r) of 0.924, is quite good. Thus, the prediction of leachate generation using artificial neural network model can be recommended for predicting leachate generation in the future. In this study, a prediction on a leachate generation for a period of 15 days was made. The quantity of leachate generation in a landfill can be obtained by using ANN for future periods. By entering data for future periods (t +1) in ANN models, the leachate generation for the period (t +1) can be predicted.展开更多
基金Project(50175034) supported by the National Natural Science Foundation of China
文摘In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model.
基金Supported by the National Natural Science Foundation of China(No.20076036)and Education Department of Hubei Province.
文摘A new correlation for the prediction of gas hold up in bubble columns was proposed based on an extensive experimental database set up from the literature published over last 30 years. The updated estimation method relying on artificial neural network, dimensional analysis and phenomenological approaches was used and the model prediction agreed with the experimental data with average relative error less than 10%.
基金Under the auspices of National Natural Science Foundation of China(No.41001363)
文摘This study aims to provide a predictive vegetation mapping approach based on the spectral data, DEM and Generalized Additive Models (GAMs). GAMs were used as a prediction tool to describe the relationship between vegetation and environmental variables, as well as spectral variables. Based on the fitted GAMs model, probability map of species occurrence was generated and then vegetation type of each grid was defined according to the probability of species occurrence. Deviance analysis was employed to test the goodness of curve fitting and drop contribution calculation was used to evaluate the contribution of each predictor in the fitted GAMs models. Area under curve (AUC) of Receiver Operating Characteristic (ROC) curve was employed to assess the results maps of probability. The results showed that: 1) AUC values of the fitted GAMs models are very high which proves that integrating spectral data and environmental variables based on the GAMs is a feasible way to map the vegetation. 2) Prediction accuracy varies with plant community, and community with dense cover is better predicted than sparse plant community. 3) Both spectral variables and environmental variables play an important role in mapping the vegetation. However, the contribution of the same predictor in the GAMs models for different plant communities is different. 4) Insufficient resolution of spectral data, environmental data and confounding effects of land use and other variables which are not closely related to the environmental conditions are the major causes of imprecision.
基金National Key Basic Research and Development(No.2002CB312200)
文摘Mixed-weight least-squares (MWLS) predictive control algorithm, compared with quadratic programming (QP) method, has the advantages of reducing the computer burden, quick calculation speed and dealing with the case in which the optimization is infeasible. But it can only deal with soft constraints. In order to deal with hard constraints and guarantee feasibility, an improved algorithm is proposed by recalculating the setpoint according to the hard constraints before calculating the manipulated variable and MWLS algorithm is used to satisfy the requirement of soft constraints for the system with the input constraints and output constraints. The algorithm can not only guarantee stability of the system and zero steady state error, but also satisfy the hard constraints of input and output variables. The simulation results show the improved algorithm is feasible and effective.
基金provided by the Program for New Century Excellent Talents in University (No. NCET-06-0477)the Independent Research Project of the State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No. SKLCRSM09X01)the Fundamental Research Funds for the Central Universities
文摘In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring method was proposed in this study,and the major steps of the monitoring method include:firstly,time-series images of the similarity model in the test were obtained by a camera,and secondly,measuring points marked as artificial targets were automatically tracked and recognized from time-series images.Finally,the real-time plane displacement field was calculated by the fixed magnification between objects and images under the specific conditions.And then the application device of the method was designed and tested.At the same time,a sub-pixel location method and a distortion error model were used to improve the measuring accuracy.The results indicate that this method may record the entire test,especially the detailed non-uniform deformation and sudden deformation.Compared with traditional methods this method has a number of advantages,such as greater measurement accuracy and reliability,less manual intervention,higher automation,strong practical properties,much more measurement information and so on.
文摘The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine,Iran was predicted via multiple regression method and artificial neural networks.Results of 33 blasts in the mine were collected for modeling.Input variables were:joints spacing,density and uniaxial compressive strength of the intact rock,burden,spacing,stemming,bench height to burden ratio,and specific charge.The dependent variable was ratio of boulder volume to pattern volume.Both techniques were successful in predicting the ratio.In this study,the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19,respectively.
文摘An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation(BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand(gross domestic product(GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand(population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.
文摘Objective: Hemolysis in blood pumps has been measured by various in vitro test methods, in which normalized index of hemolysis (NIH) was established. As NIH is complicated and difficult to calculate, erythrocyte fragment count is proposed in the present study to predict hemolysis in roller pumps. Methods: Five paired in vitro tests were conducted using the POLYSTAN pediatric pump(group A) and COBE pump( group B). Ten whole blood samples (400 ml ) were circled in the roller pump for 16 h. Erythrocyte fragments count and plasma-free hemoglobin (FHb) were measured before pumping and every two hours through circulation after four-hour-pumping. The morphological changes of erythrocyte were observed by scanning electron microscope. Results: The two groups' EFC and FHb levels were increased linearly during a long duration of pumping and linear regression of erythrocyte fragments count and plasma-free hemoglobin were correlated. Conclusion: Erythrocyte fragments count could be used as an index in evaluating the in vitro hemolytic properties of blood pumps.
文摘One of the problems encountered in the operation of a leachate treatment in a landfill is the quantity of the fluctuating leachate. Therefore, information on the precise prediction about the quantity of leachate produced in a landfill is required. This information can be obtained by using an ANN (artificial neural networks) model. In this study, a prediction on a leachate generation for a period of 15 days was made. The input for the ANN model consists of data such as rainfall, temperature, humidity, duration of solar radiation, and the landfill characteristics, while the output is the leachate landfills production in Minamiashigara, Japan. The ANN algorithm uses a BP (back propagation) with LM (Levenberg-Marquadrt) training type. By using the input-output data pairs, the training of ANN model was conducted in order to obtain the values of the weights that describe the relationship between the input-output data. Furthermore, with the trained ANN model, the prediction of leachate generation for a period of 15 days was made. The study result shows that the prediction accuracy ofleachate generation of ANN-C model, with a correlation coefficient (r) of 0.924, is quite good. Thus, the prediction of leachate generation using artificial neural network model can be recommended for predicting leachate generation in the future. In this study, a prediction on a leachate generation for a period of 15 days was made. The quantity of leachate generation in a landfill can be obtained by using ANN for future periods. By entering data for future periods (t +1) in ANN models, the leachate generation for the period (t +1) can be predicted.