The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
A finite horizon predictive control algorithm, which applies a saturated feedback control law as its local control law, is presented for nonlinear systems with time-delay subject to input constraints. In the algorithm...A finite horizon predictive control algorithm, which applies a saturated feedback control law as its local control law, is presented for nonlinear systems with time-delay subject to input constraints. In the algorithm, N free control moves, a saturated local control law and the terminal weighting matrices are solved by a minimization problem based on linear matrix inequality (LMI) constraints online. Compared with the algorithm with a nonsaturated local law, the presented algorithm improves the performances of the closed-loop systems such as feasibility and optimality. This model predictive control (MPC) algorithm is applied to an industrial continuous stirred tank reactor (CSTR) with explicit input constraint. The simulation results demonstrate that the presented algorithm is effective.展开更多
A robust model predictive control (MPC) algorithm for discrete time linear systems with time-delay (RPC-TDS) subjected to constrained input control is presented, where the polytopic uncertainties exist in state matric...A robust model predictive control (MPC) algorithm for discrete time linear systems with time-delay (RPC-TDS) subjected to constrained input control is presented, where the polytopic uncertainties exist in state matrices and input matrices. In the algorithm the standard optimization of quadratic objective function has been transformed into optimization of sum of N+1 upper bounds of the quadratic objective function with respect to N control moves and a state feedback control law, where N is the control horizon. The feasibility of the optimization problem guarantees that the algorithm is robustly stable. The simulation results verify the effectiveness of the proposed algorithm.展开更多
This paper proposes a novel method for incorporating wave domain prediction in a three-channel(3CH)architecture,which is the optimal architecture from a transparency point of view,to overcome the poor transparency pro...This paper proposes a novel method for incorporating wave domain prediction in a three-channel(3CH)architecture,which is the optimal architecture from a transparency point of view,to overcome the poor transparency problem of using the wave variable method in a time-delay teleoperation system.A 3CH teleoperation control architecture is established by selecting parameters of the 4CH architecture sensibly for the system without force sensor in the master side.The communication channel is divided into a two-port model by combining force and velocity information reasonably to extend the wave variable method to a 3CH architecture.Then the I/O signal of the two-port model is transformed into wave variable.A predictor is added to the wave domain of the master side to further improve the transparency of the system,and a regulator is designed to ensure the passivity of the predictor.Experimental results show that the proposed method can guarantee stability and improve the transparency of the teleoperation system with time-delay.展开更多
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
基金Supported by the National High Technology Research and Development Program of China(2004AA412050)
文摘A finite horizon predictive control algorithm, which applies a saturated feedback control law as its local control law, is presented for nonlinear systems with time-delay subject to input constraints. In the algorithm, N free control moves, a saturated local control law and the terminal weighting matrices are solved by a minimization problem based on linear matrix inequality (LMI) constraints online. Compared with the algorithm with a nonsaturated local law, the presented algorithm improves the performances of the closed-loop systems such as feasibility and optimality. This model predictive control (MPC) algorithm is applied to an industrial continuous stirred tank reactor (CSTR) with explicit input constraint. The simulation results demonstrate that the presented algorithm is effective.
基金The project is supported by the National High Technology Research and Development (863) Programof China (2002AA412010)
文摘A robust model predictive control (MPC) algorithm for discrete time linear systems with time-delay (RPC-TDS) subjected to constrained input control is presented, where the polytopic uncertainties exist in state matrices and input matrices. In the algorithm the standard optimization of quadratic objective function has been transformed into optimization of sum of N+1 upper bounds of the quadratic objective function with respect to N control moves and a state feedback control law, where N is the control horizon. The feasibility of the optimization problem guarantees that the algorithm is robustly stable. The simulation results verify the effectiveness of the proposed algorithm.
基金Supported by the National High Technology Research and Development Programme of China(No.2006AA04Z245)the Basic Research Universities Special Fund Operations(No.JUSRP11127)
文摘This paper proposes a novel method for incorporating wave domain prediction in a three-channel(3CH)architecture,which is the optimal architecture from a transparency point of view,to overcome the poor transparency problem of using the wave variable method in a time-delay teleoperation system.A 3CH teleoperation control architecture is established by selecting parameters of the 4CH architecture sensibly for the system without force sensor in the master side.The communication channel is divided into a two-port model by combining force and velocity information reasonably to extend the wave variable method to a 3CH architecture.Then the I/O signal of the two-port model is transformed into wave variable.A predictor is added to the wave domain of the master side to further improve the transparency of the system,and a regulator is designed to ensure the passivity of the predictor.Experimental results show that the proposed method can guarantee stability and improve the transparency of the teleoperation system with time-delay.