期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于小菱形-线形搜索模板的快速运动估计 被引量:4
1
作者 任胜兵 陈元 +1 位作者 江伟 黄自武 《计算机工程》 CAS CSCD 北大核心 2010年第19期234-236,共3页
提出一种基于小菱形-线形搜索模板的块匹配算法。对于静止块,通过小菱形搜索一步到位。对于运动块,利用已计算的块误差的分布,得到块误差下降方向,并用小菱形-线形混合模板快速定位运动矢量,使搜索点数大幅减少。通过预测搜索中心,使速... 提出一种基于小菱形-线形搜索模板的块匹配算法。对于静止块,通过小菱形搜索一步到位。对于运动块,利用已计算的块误差的分布,得到块误差下降方向,并用小菱形-线形混合模板快速定位运动矢量,使搜索点数大幅减少。通过预测搜索中心,使速度和精度进一步优化。实验结果表明,在保持图像信噪比的基础上,搜索点数比菱形搜索法、十字-菱形搜索法等平均减少50%以上。 展开更多
关键词 运动估计 块误差下降 线形搜索 预测搜索中心
下载PDF
一种高效率的快速块匹配运动估计算法 被引量:2
2
作者 何书前 张学平 +1 位作者 邹昉楠 桂占吉 《计算机工程与应用》 CSCD 北大核心 2006年第32期27-30,共4页
采用菱形搜索算法对各种视频测试序列中运动矢量的研究,基于H.264视频编码标准提出了一种快速块匹配运动估计算法。它是以图像中相邻宏块之间的时空相关性为前提,结合了分布式菱形搜索,预测搜索和中止阈值等一系列技术而提出的,试验结... 采用菱形搜索算法对各种视频测试序列中运动矢量的研究,基于H.264视频编码标准提出了一种快速块匹配运动估计算法。它是以图像中相邻宏块之间的时空相关性为前提,结合了分布式菱形搜索,预测搜索和中止阈值等一系列技术而提出的,试验结果表明该算法在运算速度方面优于菱形搜索,而获得与全搜索相当的峰值信噪比。 展开更多
关键词 块匹配运动估计 菱形搜索 初始搜索中心预测 视频编码
下载PDF
Prediction of the lowest energy configuration for Lennard-Jones clusters 被引量:1
3
作者 LAI XiangJing XU RuChu HUANG WenQi 《Science China Chemistry》 SCIE EI CAS 2011年第6期985-991,共7页
Based on the work of previous researchers, a new unbiased optimization algorithm—the dynamic lattice searching method with two-phase local search and interior operation (DLS-TPIO)—is proposed in this paper. This alg... Based on the work of previous researchers, a new unbiased optimization algorithm—the dynamic lattice searching method with two-phase local search and interior operation (DLS-TPIO)—is proposed in this paper. This algorithm is applied to the optimization of Lennard-Jones (LJ) clusters with N=2–650, 660, and 665–680. For each case, the putative global minimum reported in the Cambridge Cluster Database (CCD) is successfully found. Furthermore, for LJ533 and LJ536, the potential energies obtained in this study are superior to the previous best results. In DLS-TPIO, a combination of the interior operation, two-phase local search method and dynamic lattice searching method is adopted. At the initial stage of the optimization, the interior operation reduces the energy of the cluster, and gradually makes the configuration ordered by moving some surface atoms with high potential energy to the interior of the cluster. Meanwhile, the two-phase local search method guides the search to the more promising region of the configuration space. In this way the success rate of the algorithm is significantly increased. At the final stage of the optimization, in order to decrease energy of the cluster further, the positions of surface atoms are further optimized by using the dynamic lattice searching method. In addition, a simple new method to identify the central atom of icosahedral configurations is also presented. DLS-TPIO has higher computing speed and success rates than some well-known unbiased optimization methods in the literature. 展开更多
关键词 global optimization Lennard-Jones clusters interior operation two-phase local search dynamic lattice searching
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部