期刊文献+
共找到1,768篇文章
< 1 2 89 >
每页显示 20 50 100
权衡预测时间和偏离度的消防车辆救援调度算法 被引量:2
1
作者 陈友荣 卢俊杰 +2 位作者 曾江波 孙萍 诸燕平 《计算机应用与软件》 北大核心 2022年第11期264-271,280,共9页
考虑消防车辆救援调度的低效率和公平性问题,提出一种权衡预测时间和偏离度的消防车辆救援调度算法(RSA)。RSA提出受灾区域所需消防车辆数量约束和消防中心拥有消防车辆数量约束,根据路段期望通行时间计算当前路段路况权重、调度预测时... 考虑消防车辆救援调度的低效率和公平性问题,提出一种权衡预测时间和偏离度的消防车辆救援调度算法(RSA)。RSA提出受灾区域所需消防车辆数量约束和消防中心拥有消防车辆数量约束,根据路段期望通行时间计算当前路段路况权重、调度预测时间和救援时间偏离度,并建立权衡调度预测时间和偏离度的消防救援调度模型。设计三维实数的染色体,通过精英选择、保存历史最优染色体、映射交叉、非均匀变异、移位变异等修正遗产算法求解最优救援调度模型,获得车辆抵达受灾区域的最优方案。实验结果表明:RSA可获得最优调度方案,具有较小的运行时间,并降低车辆平均调度预测时间和离规定救援时间的偏离度,提高算法收敛速度,比SA、PSO和TNPR算法更优。 展开更多
关键词 救援调度 预测时间 偏离度 修正遗传算法 消防车辆
下载PDF
风电功率爬坡事件预测时间窗口的选取 被引量:12
2
作者 欧阳庭辉 查晓明 +2 位作者 秦亮 熊一 朱小帆 《电网技术》 EI CSCD 北大核心 2015年第2期414-419,共6页
为了完整、高效地预测爬坡事件,提出在一个合适的时间窗口内进行风电功率预测和爬坡事件识别的方法,并重点讨论如何选取合适的预测时间窗。首先通过历史爬坡事件的识别,统计爬坡持续时间的分布规律;利用数据相关性分析研究实例样本数据... 为了完整、高效地预测爬坡事件,提出在一个合适的时间窗口内进行风电功率预测和爬坡事件识别的方法,并重点讨论如何选取合适的预测时间窗。首先通过历史爬坡事件的识别,统计爬坡持续时间的分布规律;利用数据相关性分析研究实例样本数据的可预测性;综合2者的结果确定爬坡预测时间窗口取值的可选范围。其次,基于预测时间窗的目标要求,提出可能的分析指标,在给定取值范围内寻找满足要求的最优时间窗口作为所求预测窗。最后以美国BPA地区的风电功率数据为实例,仿真求出该数据集的预测窗口大小为4.5 h,通过多个评估指标验证了该预测时间窗对实例爬坡预测的有效性。该工作为爬坡事件的预测奠定了重要基础。 展开更多
关键词 爬坡事件 预测时间窗口 持续时间 预测
下载PDF
风电功率爬坡事件预测时间窗选取建模 被引量:9
3
作者 欧阳庭辉 查晓明 +2 位作者 秦亮 熊一 夏添 《中国电机工程学报》 EI CSCD 北大核心 2015年第13期3204-3210,共7页
为了解决多长时间段的风电功率预测数据能够有效地完成爬坡事件预测,提出爬坡预测窗口的选取问题。假设以一个预测窗内能完整预测一个爬坡事件为目标,根据预测时间窗内冗余信息最小建立数学规划模型。然后,结合历史爬坡事件持续时间的... 为了解决多长时间段的风电功率预测数据能够有效地完成爬坡事件预测,提出爬坡预测窗口的选取问题。假设以一个预测窗内能完整预测一个爬坡事件为目标,根据预测时间窗内冗余信息最小建立数学规划模型。然后,结合历史爬坡事件持续时间的统计分析和风电功率数据本身的可预测性研究,分析模型最优解的存在性并给出模型的参数约束范围和实现算法。其次,以美国BPA区域的风电功率数据为实例,根据具体的模型求解过程,仿真得到模型的最优解,并以该最优解作为预测时间窗的选取。最后,根据预测评估指标验证该时间窗具有较好的预测性能,从而说明该预测窗口对爬坡事件分析的有效性,和该预测窗口选取模型用于爬坡事件预测的可行性。 展开更多
关键词 风电爬坡事件 预测时间 冗余时间 爬坡持续时间 预测
下载PDF
利用神经元拓展正则极端学习机预测时间序列 被引量:2
4
作者 张弦 王宏力 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第12期1510-1514,共5页
为实现对于时间序列预测数据的准确预测,提出一种神经元拓展正则极端学习机(NERELM,Neuron-Expanding Regularized Extreme Learning Machine),并研究了其在时间序列预测中的应用.NERELM根据结构风险最小化原理权衡经验风险与结构风险,... 为实现对于时间序列预测数据的准确预测,提出一种神经元拓展正则极端学习机(NERELM,Neuron-Expanding Regularized Extreme Learning Machine),并研究了其在时间序列预测中的应用.NERELM根据结构风险最小化原理权衡经验风险与结构风险,以逐次拓展隐层神经元的方式自动确定最佳的网络结构,以避免传统神经网络训练过程中需人为确定网络结构的弊端.应用于时间序列的仿真结果表明:NERELM可有效实现对于RELM最佳网络结构的自动确定,具有预测精度高与计算速度快的优点. 展开更多
关键词 神经网络 极端学习机 正则极端学习机 时间序列预测
下载PDF
一种基于线性模糊信息粒的时间序列预测算法
5
作者 杨昔阳 陈豪 +2 位作者 李志伟 张新军 颜星华 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期188-198,共11页
[目的]由于经济、金融、环境和生态等多个领域中时间序列数据规模的持续增长,对其进行预测变得日益复杂,为了提高大规模时间序列的长期预测效率,探索构建模糊信息粒的创新方法,以准确反映数据集大小和趋势信息.[方法]首先,根据模糊拓展... [目的]由于经济、金融、环境和生态等多个领域中时间序列数据规模的持续增长,对其进行预测变得日益复杂,为了提高大规模时间序列的长期预测效率,探索构建模糊信息粒的创新方法,以准确反映数据集大小和趋势信息.[方法]首先,根据模糊拓展原理,研究各种模糊信息粒,包括区间型、三角型和高斯型模糊信息粒的距离定义.随后,结合时间序列片段的中心线段和离散程度信息,引入一类新颖的模糊信息粒.这些粒子可以有效捕捉指定时间范围内时间序列的趋势信息和离散程度,进一步地提出高斯型模糊信息粒距离的函数表达式和几何解释.为了将这些粒子用于时间序列预测,设计一类模糊推理预测系统,该系统可以利用历史数据构造模糊信息粒,并从高斯型模糊信息粒序列中提取模糊推理规则.[结果]高斯型模糊信息粒距离的函数表达式具有简洁的数学表示,可以合理地反映两个高斯模糊信息粒的中心线和离散程度的差异.模糊推理预测系统可以从高斯型模糊信息粒序列中提取有效的规则,实现时间序列的长期预测.实验结果表明,结合线性高斯模糊信息粒与模糊推理系统的预测方法在均方根误差和平均绝对百分比误差方面优于其他数值预测算法和其他模糊信息粒推理方法,包括自回归模型、自回归神经网络和回归向量机等.[结论]结合线性模糊信息粒和模糊推理系统的方法可以提高时间序列长期预测的效率.基于对数据集特征的合理抽象提出了一种新颖的线性模糊信息粒,并简洁地推导出了它们的距离定义.时间序列预测的成功表明,通过巧妙地设计信息粒,能够准确捕捉数据集中的关键特征,从而提高其他数据挖掘任务的效率,例如更快的计算速度和更准确的结果. 展开更多
关键词 线性模糊信息粒 模糊推理系统 时间序列预测
下载PDF
基于改进时空图卷积网络的道路行程时间预测模型
6
作者 王忠宇 李盼归 +1 位作者 杨航 吴兵 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第4期1022-1029,共8页
为提高道路网行程时间预测精度,综合考虑行程时间的空间依赖性、时间依赖性和天气因素影响,提出了基于属性增强和注意力机制的时空图卷积网络模型.首先,构建属性增强单元,将行程时间和天气信息融合;然后,利用图卷积网络捕获空间依赖性,... 为提高道路网行程时间预测精度,综合考虑行程时间的空间依赖性、时间依赖性和天气因素影响,提出了基于属性增强和注意力机制的时空图卷积网络模型.首先,构建属性增强单元,将行程时间和天气信息融合;然后,利用图卷积网络捕获空间依赖性,利用门控递归单元捕获时间依赖性,并利用注意力机制增强模型对特征的学习;最后,利用该模型在真实数据集上对未来15、30、45和60 min的行程时间进行预测.结果表明:预测结果的均方根误差(RMSE)分别为0.0453、0.0456、0.0457和0.0468,与其他模型相比表现更优;考虑了时间、空间和天气因素后,相较于不考虑天气的情况,预测误差降低了约10.3%;相较于不考虑空间依赖性的情况,降低了约24.2%,表明所提模型能更好表达时空依赖性和外部条件影响. 展开更多
关键词 交通工程 行程时间预测 图卷积网络 时空依赖 天气因素
下载PDF
执行时间预测驱动的工作流作业调度
7
作者 胡亚红 邱圆圆 毛家发 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第5期228-238,共11页
针对工作流作业调度问题,提出使用关键路径法进行工作流的执行时间预测和资源分配。工作流执行时间预测算法使用并行应用有向无环图描述工作流中子作业的执行顺序。基于此顺序,为子作业进行系统资源的逻辑分配。根据子作业的特征和资源... 针对工作流作业调度问题,提出使用关键路径法进行工作流的执行时间预测和资源分配。工作流执行时间预测算法使用并行应用有向无环图描述工作流中子作业的执行顺序。基于此顺序,为子作业进行系统资源的逻辑分配。根据子作业的特征和资源分配信息,使用梯度提升决策树进行子作业执行时间预测,并计算工作流的关键路径。关键路径上所有子作业的完成时间之和即为工作流的执行时间。若预测的工作流执行时间满足用户要求,则根据子作业执行顺序和资源分配方案进行作业调度,执行工作流。对比实验表明,两个工作流的执行时间预测误差分别为5.72%和1.57%。与Spark默认调度算法相比,工作流调度算法将两个工作流的完成时间分别缩短了15.71%和15.44%。 展开更多
关键词 工作流 时间预测 关键路径 调度算法 梯度提升决策树
下载PDF
基于ISSA-XGBoost模型的多特征融合露天矿卡车行程时间预测
8
作者 顾清华 王燕 +1 位作者 王倩 魏瑾瑜 《有色金属(矿山部分)》 2024年第1期1-10,共10页
针对露天矿运输系统卡车行程时间预测问题,提出了一种基于特征选择及改进麻雀算法优化XGBoost的露天矿卡车行程时间预测模型。模型充分考虑了卡车特征、道路特征、气象特征以及时间特征对卡车行程时间的影响,并使用皮尔逊系数法深入分... 针对露天矿运输系统卡车行程时间预测问题,提出了一种基于特征选择及改进麻雀算法优化XGBoost的露天矿卡车行程时间预测模型。模型充分考虑了卡车特征、道路特征、气象特征以及时间特征对卡车行程时间的影响,并使用皮尔逊系数法深入分析影响因素的贡献度。针对麻雀算法中全局搜索能力薄弱的问题引入反向学习和螺旋搜索策略,以提高算法的收敛性能。最后,使用改进的麻雀算法对XGBoost的关键参数进行寻优,进而构建露天矿卡车行程时间预测模型。选取国内某大型露天矿卡车调度系统采集的数据进行仿真模拟,并将所提出模型与SVM、BP、RBF和RF等其他机器学习模型进行对比。结果表明:所提出模型的预测误差均低于其他模型,相关系数可达0.9819。开发的模型和分析结果可以极大地帮助决策者规划、运营和管理更高效的露天矿运输系统。 展开更多
关键词 行程时间预测 露天矿卡车 XGBoost 改进麻雀算法 均值滤波
下载PDF
进港航班滑入时间预测
9
作者 唐小卫 丁叶 +2 位作者 张生润 任思豫 吴佳琦 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2218-2224,共7页
准确预测进港航班滑入时间对合理调配航班保障资源和提高机场场面运行效率具有重要意义,可有效克服各大机场粗放式预测航班进港时刻的不足,为此提出一种基于机器学习模型的滑入时间预测方法。以首都机场为具体研究对象,分析进港航班滑... 准确预测进港航班滑入时间对合理调配航班保障资源和提高机场场面运行效率具有重要意义,可有效克服各大机场粗放式预测航班进港时刻的不足,为此提出一种基于机器学习模型的滑入时间预测方法。以首都机场为具体研究对象,分析进港航班滑入时间的影响因素并构建特征集;将线性回归、K-最近邻、支持向量机、决策树、随机森林和梯度提升回归树6种在滑出时间预测方面得到广泛应用的机器学习模型用于进港航班滑入时间预测。研究结果表明:在误差范围±3 min内6种机器学习模型的预测精度均超过90%,表明特征集的构建和模型的选择是有效的;综合预测性能与模型拟合评估结果,梯度提升回归树模型的预测效果最好;在梯度提升回归树模型上场面流量特征的贡献度最大,新引入的跨区特征对预测模型的贡献度超过了大部分传统特征。 展开更多
关键词 航空运输 机场场面运行 滑行时间预测 机器学习 梯度提升回归树
下载PDF
基于HPO-LSTM的公交周转时间预测
10
作者 张萌萌 王成霄 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第8期43-50,共8页
公交周转时间的准确预测是公交智能排班的基础和前提,是制定行车时刻表的关键。为提高公交周转时间的预测精度,提出了基于猎人猎物优化长短时记忆神经网络(HPO-LSTM)的公交周转时间预测模型,将长短时记忆神经网络(LSTM)中的超参数(隐含... 公交周转时间的准确预测是公交智能排班的基础和前提,是制定行车时刻表的关键。为提高公交周转时间的预测精度,提出了基于猎人猎物优化长短时记忆神经网络(HPO-LSTM)的公交周转时间预测模型,将长短时记忆神经网络(LSTM)中的超参数(隐含层节点数、迭代循环数以及初始学习率)映射为猎人猎物优化算法(HPO)种群的位置;以LSTM模型预测值与真实值产生的均方根误差E_(RMS)作为种群适应度函数,优化种群位置,实现LSTM神经网络超参数寻优;用最优超参数构建LSTM神经网络,进行公交周转时间预测。采用某市公交1号线数据对模型进行验证分析,结果表明:相比于BP、LSTM、FA-BP、HPO-BP模型,HPO-LSTM模型平均绝对百分比误差E_(MAP)分别降低10.44%、4.00%、3.61%、2.04%。 展开更多
关键词 交通运输工程 公共交通 周转时间预测 猎人猎物优化算法 长短时记忆神经网络
下载PDF
基于图卷积神经网络的滑行时间预测研究
11
作者 彭瑛 侯婧娉 +1 位作者 宛照坤 孙钰 《航空计算技术》 2024年第4期1-6,共6页
为准确预测滑行时间,提出一种基于机场场面运行态势演变的图卷积神经网络预测方法。首先,根据机场场面航空器时空分布情况,从路段流量、路段密度、路段速度等多角度构建交通态势指标体系;其次,利用主成分分析法对指标进行降维处理并利用... 为准确预测滑行时间,提出一种基于机场场面运行态势演变的图卷积神经网络预测方法。首先,根据机场场面航空器时空分布情况,从路段流量、路段密度、路段速度等多角度构建交通态势指标体系;其次,利用主成分分析法对指标进行降维处理并利用K-means算法实现对机场场面路段的态势等级划分,绘制机场场面时空分布热力图;最后,利用图卷积神经网络(GCN)结合门控循环单元(GRU)来获取场面路段特征数据的时空特征,将GRU作为解码器预测输出滑行时间。以深圳宝安国际机场AirTOP仿真数据为例,对所提出的方法进行了分析和验证,并获得了符合预期的预测结果。实验结果表明,该方法在预测滑行时间方面具有有效性。 展开更多
关键词 机场场面 K-MEANS聚类 主成分分析法 图卷积神经网络 滑行时间预测
下载PDF
较短的长序列时间序列预测模型 被引量:1
12
作者 徐泽鑫 杨磊 李康顺 《计算机应用》 CSCD 北大核心 2024年第6期1824-1831,共8页
针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Un... 针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Uniform Selection Mechanism)自注意力机制搭建一个序列到序列(Seq2Seq)结构,用于提取长序列输入的特征;其次,设计“远轻近重”策略将多个短序列输入特征提取能力较强的长短时记忆(LSTM)模块提取的各时段数据特征进行重分配;最后,用重分配的特征增强提取的长序列输入特征,提高预测精度并实现时序预测。利用4个公开的时间序列数据集验证模型的有效性。实验结果表明,与综合表现次优的对比模型循环门单元(GRU)相比,SLTSFM的平均绝对误差(MAE)指标在4个数据集上的单变量时序预测分别减小了61.54%、13.48%、0.92%和19.58%,多变量时序预测分别减小了17.01%、18.13%、3.24%和6.73%。由此可见SLTSFM在提升较短的长序列时序预测精度方面的有效性。 展开更多
关键词 较短的长序列时间序列预测 序列到序列 长短期记忆 自注意力机制 特征重分配
下载PDF
一种预测流程剩余时间的可解释特征分层方法
13
作者 郭娜 刘聪 +3 位作者 李彩虹 陆婷 闻立杰 曾庆田 《软件学报》 EI CSCD 北大核心 2024年第3期1341-1356,共16页
流程剩余时间预测对于业务异常的预防和干预有着重要的价值和意义.现有的剩余时间预测方法通过深度学习技术达到了更高的准确率,然而大多数深度模型结构复杂难以解释预测结果,即不可解释问题.此外,剩余时间预测除了活动这一关键属性还... 流程剩余时间预测对于业务异常的预防和干预有着重要的价值和意义.现有的剩余时间预测方法通过深度学习技术达到了更高的准确率,然而大多数深度模型结构复杂难以解释预测结果,即不可解释问题.此外,剩余时间预测除了活动这一关键属性还会根据领域知识选择若干其他属性作为预测模型的输入特征,缺少通用的特征选择方法,对于预测的准确率和模型的可解释性存在一定的影响.针对上述问题,提出基于可解释特征分层模型(explainable feature-based hierarchical model,EFH model)的流程剩余时间预测框架.具体而言,首先提出特征自选择策略,通过基于优先级的后向特征删除和基于特征重要性值的前向特征选择,得到对预测任务具有积极影响的属性作为模型输入.然后提出可解释特征分层模型架构,通过逐层加入不同特征得到每层的预测结果,解释特征值与预测结果的内在联系.采用LightGBM(light gradient boosting machine)和LSTM(long short-term memory)算法实例化所提方法,框架是通用的,不限于选用算法.最后在8个真实事件日志上与最新方法进行比较.实验结果表明所提方法能够选取出有效特征,提高预测的准确率,并解释预测结果. 展开更多
关键词 流程挖掘 剩余时间预测 特征选择 可解释 分层模型
下载PDF
基于CEEMDAN和改进的混合时间序列模型工作面涌水量预测研究
14
作者 丁莹莹 尹尚先 +4 位作者 连会青 卜昌森 刘伟 夏向学 周旺 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第3期110-117,共8页
为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预... 为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预测方法。该方法利用CEEMDAN处理涌水量数据,构建麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)和自回归移动平均模型(ARIMA)并行级联而成的混合时间序列模型对工作面涌水量进行预测。研究结果表明:该模型预测结果与真实数据相差更小,平均绝对误差为6.36 m 3/h,均方根误差为10.6 m 3/h,模型拟合系数为0.95,更适用于工作面涌水量预测。研究结果可为矿井工作面涌水量预测及防控提供参考。 展开更多
关键词 涌水量预测 时间序列预测 混合模型 经验模态分解 麻雀搜索算法
下载PDF
城市内密集交通流行程时间预测数学建模仿真
15
作者 宋娜娜 葛杨 程海涛 《计算机仿真》 2024年第6期211-215,共5页
城市交通网络包含大量的道路交叉口和车辆,且受工作日和休息日多因素的影响,使得交通流量具有不确定性,增加了预测的难度。为此,提出城市密集交通流行程时间预测数学建模研究。取样城市车辆历史数据,明确数据插值点,插值处理车辆运行数... 城市交通网络包含大量的道路交叉口和车辆,且受工作日和休息日多因素的影响,使得交通流量具有不确定性,增加了预测的难度。为此,提出城市密集交通流行程时间预测数学建模研究。取样城市车辆历史数据,明确数据插值点,插值处理车辆运行数据。利用深度学习数据归一化,计算平均行程时间、行程时间方差以及可靠度指标,提取城市密集交通流特征。基于卡尔曼滤波将预测问题转化成空间状态计算问题,实现密集交通流行程时间预测。通过实验证明,所建模型能够准确预测城市密集交通流行程时间,平均绝对百分误差均在2.3%以下,能帮助驾驶人合理规划出行。 展开更多
关键词 城市密集交通 行程时间 时间预测 插值处理
下载PDF
基于遗传算法优化XGBoost模型的地铁乘客出站走行时间预测
16
作者 郭凯旋 肖梅 +1 位作者 刘宇 张皓 《科学技术与工程》 北大核心 2024年第18期7851-7858,共8页
地铁乘客出站走行时间的预测是城市交通运行和管理的重要依据,对其进行准确预测有助于缓解地铁拥堵、优化地铁服务和提高乘客满意度。为了准确预测地铁乘客出站走行时间,首先,基于视频分析软件从监控视频中提取了乘客出站时的走行时间... 地铁乘客出站走行时间的预测是城市交通运行和管理的重要依据,对其进行准确预测有助于缓解地铁拥堵、优化地铁服务和提高乘客满意度。为了准确预测地铁乘客出站走行时间,首先,基于视频分析软件从监控视频中提取了乘客出站时的走行时间和若干特征变量。其次,为了筛选出对走行时间有显著影响的因素,采用相关性分析和最优尺度回归模型进行影响因素分析,并使用遗传算法进行最优特征组合的提取。最终,将提取出的特征作为输入向量,使用极端梯度提升模型(extreme gradient boosting,XGBoost)进行走行时间的预测,并以平均绝对误差等作为评价指标。实验结果表明,本文提出的方法在地铁乘客出站行为预测方面具有较好的效果,平均绝对误差为1.55 s,低于未优化的极端梯度提升模型(1.87 s)、支持向量机(2.03 s)和随机森林(1.96 s)等模型。 展开更多
关键词 遗传算法 极端梯度提升模型 走行时间预测 特征提取
下载PDF
A^(2)former模型在时间序列预测中的应用研究
17
作者 胡倩伟 王秀青 +2 位作者 安阳 张诺飞 王广超 《人工智能科学与工程》 CAS 北大核心 2024年第1期41-50,共10页
时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注... 时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注,Transformer变体Informer模型的研究在时间序列预测中取得了较大进展。本研究以Informer框架为基础,与加性注意力机制相结合,提出了A^(2)former模型。利用A^(2)former模型在ETT,WTH,ECL和PM2.5数据集上进行了长时间序列预测的实验,实验结果表明所提模型在长时间序列预测中表现出比基线方法(如Informer模型和LSTMa模型)更好的性能。A^(2)former模型不仅将计算时间复杂度降低到线性,而且可以实现更有效的序列建模。本研究的工作为时间序列预测提供了有益参考。 展开更多
关键词 时间序列预测 加性注意力机制 Transformer模型 Informer模型 深度学习
下载PDF
编码方式对业务流程剩余时间预测影响评估
18
作者 徐兴荣 刘聪 +5 位作者 郭娜 李婷 陆婷 闻立杰 曾庆田 任崇广 《计算机集成制造系统》 EI CSCD 北大核心 2024年第7期2431-2443,共13页
合理的事件编码方式有助于提升业务流程剩余时间预测效果,为此,有针对性地设计出5种事件编码方式。首先,抽取业务流程包含的全部事件,并利用事件编码方式对获取的事件进行编码。其次,根据业务流程序列性的特点,构建不同类型的剩余时间... 合理的事件编码方式有助于提升业务流程剩余时间预测效果,为此,有针对性地设计出5种事件编码方式。首先,抽取业务流程包含的全部事件,并利用事件编码方式对获取的事件进行编码。其次,根据业务流程序列性的特点,构建不同类型的剩余时间预测模型,同时将事件编码向量作为预测模型的输入,从而评估事件编码方式对业务流程剩余时间预测的影响。在8个公开事件日志数据集上进行实验,结果表明GloVe事件编码方式在提高业务流程剩余时间预测效果上是最有效的。该实验结果可帮助研究者和从业者选择最合适的事件编码方式以实现最佳剩余时间预测效果。 展开更多
关键词 业务流程 剩余时间预测 深度学习 事件编码方式
下载PDF
基于自适应时间窗的数据-模型融合驱动暂态频率预测
19
作者 邓贤哲 姚伟 +4 位作者 黄伟 翟苏巍 郑超 李文云 文劲宇 《电网技术》 EI CSCD 北大核心 2024年第4期1551-1562,I0049,I0050,共14页
新能源大规模并网使得新型电力系统的暂态频率响应特征更加复杂,现有频率在线预测方法难以兼顾准确性和及时性。基于此,提出基于自适应时间窗的数据-模型融合驱动暂态频率预测方法。首先,基于长短期记忆网络,离线训练多个具有不同长度... 新能源大规模并网使得新型电力系统的暂态频率响应特征更加复杂,现有频率在线预测方法难以兼顾准确性和及时性。基于此,提出基于自适应时间窗的数据-模型融合驱动暂态频率预测方法。首先,基于长短期记忆网络,离线训练多个具有不同长度时序数据输入的频率曲线循环预测模型;其次,利用参数辨识方法离线建立各发电集群的通用等值频率响应模型,在此基础上构建系统有功-频率物理机理快速分析模型;最后,串行融合前述频率曲线循环预测模型与有功-频率物理机理快速分析模型,并提出“可信度量化评估指标”,实时分析在线预测过程中不同评估时刻下预测结果的精度,自适应调整输入时序数据长度,直至预测结果满足要求并输出。含风电的IEEE39节点系统的仿真结果表明,所提方法在不同风电渗透率或不同扰动下均能快速、准确地预测暂态频率响应曲线,相较于其他在线预测方法具有更优的评估性能。 展开更多
关键词 数据-模型融合驱动 自适应时间预测 暂态频率预测 广域量测技术
下载PDF
基于多尺度分段的长时间序列预测方法
20
作者 何胜林 龙琛 +6 位作者 郑静 王爽 文振焜 吴惠思 倪东 何小荣 吴雪清 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第2期232-240,共9页
针对目前长时间序列预测(long sequence time-series forecasting,LSTF)存在历史数据量大、计算复杂度高、预测精度要求高等问题,提出一种基于多尺度分段的Transformer模型.该模型基于Transformer架构进行改进和优化,使用多尺度分段将... 针对目前长时间序列预测(long sequence time-series forecasting,LSTF)存在历史数据量大、计算复杂度高、预测精度要求高等问题,提出一种基于多尺度分段的Transformer模型.该模型基于Transformer架构进行改进和优化,使用多尺度分段将时间序列切片成多个时间段进行训练和预测,降低了长时间序列的复杂性,并实现了更高精度的预测.在电力变压器油温(electricity transformer temperature,ETT)数据集、用电负荷(electricity consumption load,ECL)数据集和天气(Weather)数据集中,分别采用传统Transfomer、Informer、门控循环单元(gated recurrent unit,GRU)、时序卷积网络(temporal convolutional network,TCN)和长短期记忆(long short-term memory,LSTM)5种基准模型与本研究提出的多尺度分段的Transformer模型,对长时间序列进行预测.结果表明,采用基于多尺度分段的Transformer模型在Weather数据集上对预测长度为192的时间序列预测的均方误差和平均绝对误差分别为0.367和0.407,均优于其他模型.基于多尺度分段的Transformer模型可以综合Transformer模型的优点,且计算速度更快,预测性能更高. 展开更多
关键词 计算机神经网络 时间序列预测 Transformer模型 多尺度分段 深度学习 电力预测
下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部