在原始对偶内点算法的设计和分析中,障碍函数对算法的搜索方法和复杂性起着重要的作用.本文由核函数来确定障碍函数,设计了一个求解半正定规划问题的原始-对偶内点算法.这个障碍函数即可以定义算法新的搜索方向,又度量迭代点与中心路径...在原始对偶内点算法的设计和分析中,障碍函数对算法的搜索方法和复杂性起着重要的作用.本文由核函数来确定障碍函数,设计了一个求解半正定规划问题的原始-对偶内点算法.这个障碍函数即可以定义算法新的搜索方向,又度量迭代点与中心路径的距离,同时对算法的复杂性分析起着关键的作用.我们计算了算法的迭代界,得出了关于大步校正法和小步校正法的迭代界,它们分别是O(n^(1/2)log n log n/∈)和O(n^(1/2)log n/∈),这里n是半正定规划问题的维数.最后,我们根据一个算例,说明了算法的有效性以及对核函数的参数的敏感性.展开更多
针对预测-校正内点法(predictor-corrector primal-dualinterior point method,PCPDIPM)加权最小绝对值状态估计(weighted least absolute squares,WLAV)可能发生校正方向指向错误方向的不足,提出一种基于多预测-校正内点法(multiple PC...针对预测-校正内点法(predictor-corrector primal-dualinterior point method,PCPDIPM)加权最小绝对值状态估计(weighted least absolute squares,WLAV)可能发生校正方向指向错误方向的不足,提出一种基于多预测-校正内点法(multiple PCPDIPM,MPCPDIPM)的WLAV抗差状态估计算法。该算法在PCPDIPM的基础上,通过多次校正,对中心参数动态估计,并采用2阶段线性搜索法确定校正方向在总的牛顿方向中的最优比重,从而保证迭代点向中心轨迹靠拢。最后,通过IEEE算例仿真和我国某省网的测试结果验证了所提方法的有效性。与含不良数据辨识功能的加权最小二乘状态估计相比较,所提方法的收敛速度及抗差能力具有明显的优势。展开更多
文摘在原始对偶内点算法的设计和分析中,障碍函数对算法的搜索方法和复杂性起着重要的作用.本文由核函数来确定障碍函数,设计了一个求解半正定规划问题的原始-对偶内点算法.这个障碍函数即可以定义算法新的搜索方向,又度量迭代点与中心路径的距离,同时对算法的复杂性分析起着关键的作用.我们计算了算法的迭代界,得出了关于大步校正法和小步校正法的迭代界,它们分别是O(n^(1/2)log n log n/∈)和O(n^(1/2)log n/∈),这里n是半正定规划问题的维数.最后,我们根据一个算例,说明了算法的有效性以及对核函数的参数的敏感性.
文摘针对预测-校正内点法(predictor-corrector primal-dualinterior point method,PCPDIPM)加权最小绝对值状态估计(weighted least absolute squares,WLAV)可能发生校正方向指向错误方向的不足,提出一种基于多预测-校正内点法(multiple PCPDIPM,MPCPDIPM)的WLAV抗差状态估计算法。该算法在PCPDIPM的基础上,通过多次校正,对中心参数动态估计,并采用2阶段线性搜索法确定校正方向在总的牛顿方向中的最优比重,从而保证迭代点向中心轨迹靠拢。最后,通过IEEE算例仿真和我国某省网的测试结果验证了所提方法的有效性。与含不良数据辨识功能的加权最小二乘状态估计相比较,所提方法的收敛速度及抗差能力具有明显的优势。