Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission sce...Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission scenarios of the Representative Concentration Pathways—RCP4.5 and RCP8.5.This is based on a period of transient simulations from 1950 to2099,with a grid spacing of 50 km.The present paper focuses on the annual mean temperature and precipitation in China over this period,with emphasis on their future changes.Validation of model performance reveals marked improvement of the RegCM4.0 model in reproducing present day temperature and precipitation relative to the driving BCC_CSM1.1 model.Significant warming is simulated by both BCC_CSM1.1 and RegCM4.0,however,spatial distribution and magnitude differ between the simulations.The high emission scenario RCP8.5 results in greater warming compared to RCP4.5.The two models project different precipitation changes,characterized by a general increase in the BCC_CSM1.1,and broader areas with decrease in the RegCM4.0 simulations.展开更多
The Madden–Julian Oscillation(MJO)is a dominant mode of tropical intraseasonal variability(ISV)and has prominent impacts on the climate of the tropics and extratropics.Predicting the MJO using fully coupled clima...The Madden–Julian Oscillation(MJO)is a dominant mode of tropical intraseasonal variability(ISV)and has prominent impacts on the climate of the tropics and extratropics.Predicting the MJO using fully coupled climate system models is an interesting and important topic.This paper reports upon a recent progress in MJO ensemble prediction using the climate system model of the Beijing Climate Center,BCC-CSM1.1(m);specifically,the development of three different initialization schemes in the BCC ISV/MJO prediction system,IMPRESS.Three sets of 10-yr hindcasts were separately conducted with the three initialization schemes.The results showed that the IMPRESS is able to usefully predict the MJO,but is sensitive to the initialization scheme used and becomes better with the initialization of moisture.In addition,a new ensemble approach was developed by averaging the predictions generated from the different initialization schemes,helping to address the uncertainty in the initial values of the MJO.The ensemble-mean MJO prediction showed significant improvement,with a valid prediction length of about 20 days in terms of the different criteria,i.e.,a correlation score beyond 0.5,a RMSE lower than 1.414,or a mean square skill score beyond 0.This study indicates that utilizing the different initialization schemes of this climate model may be an efficient approach when forming ensemble predictions of the MJO.展开更多
This paper has two purposes. One is to evaluate the ability of an atmospheric general circulation model (IAP9L-AGCM) to predict summer rainfall over China one season in advance. The other is to propose a new approach ...This paper has two purposes. One is to evaluate the ability of an atmospheric general circulation model (IAP9L-AGCM) to predict summer rainfall over China one season in advance. The other is to propose a new approach to improve the predictions made by the model. First, a set of hindcast experiments for summer climate over China during 1982-2010 are performed from the perspective of real-time prediction with the IAP9L-AGCM model and the IAP ENSO prediction system. Then a new approach that effectively combines the hind-cast with its correction is proposed to further improve the model's predictive ability. A systematic evaluation reveals that the model's real-time predictions for 41 stations across China show significant improvement using this new approach, especially in the lower reaches between the Yellow River and Yangtze River valleys.展开更多
In this paper,a hindcast study of the record-breaking rainfall event occurring in Beijing on 21July 2012,is conducted by using the Weather Research and Forecasting(WRF)model forced by National Centers for Environmenta...In this paper,a hindcast study of the record-breaking rainfall event occurring in Beijing on 21July 2012,is conducted by using the Weather Research and Forecasting(WRF)model forced by National Centers for Environmental Prediction(NCEP)Global Forecasting System(GFS)outputs,paired with an investigation of the impact of topography in this region.The results indicate that WRF can reasonably predict the salient features of orographic precipitation;the 24-h rainfall amount and spatial distribution compare reasonably well with the observations.The hindcast simulation also indicates that rainfall events can be predicted approximately 36 h ahead.When the topography is removed,the spatial distribution of rainfall changes remarkably,suggesting the importance of the topography in determining rainfall structure.These results also indicate that prediction of such city-scale heavy rainfall events would benefit from a high-resolution prediction system.展开更多
The projected temperature and precipitation- change under different emissions scenarios using Coupled Model Intercomparison Project Phase 5 models over the northwestern arid regions of China (NWAC) were ana- lyzed u...The projected temperature and precipitation- change under different emissions scenarios using Coupled Model Intercomparison Project Phase 5 models over the northwestern arid regions of China (NWAC) were ana- lyzed using the ensemble of three high-resolution dy- namical downscaling simulations: the simulation of the Regional Climate Model version 4.0 (RegCM4) forced by the Beijing Climate Center Climate System Model version 1.1 (BCC_CSMI.1); the Hadley Centre Global En- vironmental Model version 3 regional climate model (HadGEM3-RA) forced by the Atmosphere-Ocean cou- pled HadGEM version 2 (HadGEM2-AO); and the Weather Research and Forecasting (WRF) model forced by the Norwegian community Earth System Model (NorESM1-M). Model validation indicated that the mul- timodel simulations reproduce the spatial and temporal distribution of temperature and precipitation well. The temperature is projected to increase over NWAC under both the 4.5 and 8.5 Representative Concentration Path- ways scenarios (RCP4.5 and RCP8.5, respectively) in the middle of the 21 st century, but the warming trend is larger under the RCP8.5 scenario, Precipitation shows a signifi- cant increasing trend in spring and winter under both RCP4.5 and RCPS.5; but in summer, precipitation is pro- jected to decrease in the Tarim Basin and Junggar Basin. The regional averaged temperature and precipitation show increasing trends in the future over NWAC; meanwhile, the large variability of the winter mean temperature and precipitation may induce more extreme cold events and intense snowfall events in these regions in the future.展开更多
With the development of individual consumption credit (ICC) in China, commercial banks have been exposed to more and more risks. The loan failure has been an important problem that the banking must face and revolve. T...With the development of individual consumption credit (ICC) in China, commercial banks have been exposed to more and more risks. The loan failure has been an important problem that the banking must face and revolve. This paper develops a factor system to explain how the borrower's risk is affected, and then establishes a risk monitoring model with AHP to pre-warn the banks how much the risk is.展开更多
A global climate prediction system (PCCSM4) was developed based on the Community Climate System Model, version 4.0, developed by the National Center for Atmospheric Research (NCAR), and an initialization scheme wa...A global climate prediction system (PCCSM4) was developed based on the Community Climate System Model, version 4.0, developed by the National Center for Atmospheric Research (NCAR), and an initialization scheme was designed by our group. Thirty-year (1981-2010) one-month-lead retrospective summer climate ensemble predictions were carded out and analyzed. The results showed that PCCSM4 can efficiently capture the main characteristics of JJA mean sea surface temperature (SST), sea level pressure (SLP), and precipitation. The prediction skill for SST is high, especially over the central and eastern Pacific where the influence of E1 Nino-Southem Oscillation (ENSO) is dominant. Temporal correlation coefficients between the pre- dicted Nino3.4 index and observed Nino3.4 index over the 30 years reach 0.7, exceeding the 99% statistical significance level. The prediction of 500-hPa geopotential height, 850-hPa zonal wind and SLP shows greater skill than for precipitation. Overall, the predictability in PCCSM4 is much higher in the tropics than in global terms, or over East Asia. Furthermore, PCCSM4 can simulate the summer climate in typical ENSO years and the interannual variability of the Asian summer monsoon well. These preliminary results suggest that PCCSM4 can be applied to real-time prediction after further testing and improvement.展开更多
Control invariant sets play a key role in model predictive control.Using Lyapunov function,a technique is proposed to design control invariant sets of planar systems in a precise form.First,itis designed for a linear ...Control invariant sets play a key role in model predictive control.Using Lyapunov function,a technique is proposed to design control invariant sets of planar systems in a precise form.First,itis designed for a linear system in Brunovsky canonical form.Then,the result is extended to generallinear systems.Finally,the nonlinear control systems are considered,and some sufficient conditionsand design techniques are also obtained.Numerical examples are presented to illustrate the proposeddesign methods.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2010CB 950903)the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)-Climate Science
文摘Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission scenarios of the Representative Concentration Pathways—RCP4.5 and RCP8.5.This is based on a period of transient simulations from 1950 to2099,with a grid spacing of 50 km.The present paper focuses on the annual mean temperature and precipitation in China over this period,with emphasis on their future changes.Validation of model performance reveals marked improvement of the RegCM4.0 model in reproducing present day temperature and precipitation relative to the driving BCC_CSM1.1 model.Significant warming is simulated by both BCC_CSM1.1 and RegCM4.0,however,spatial distribution and magnitude differ between the simulations.The high emission scenario RCP8.5 results in greater warming compared to RCP4.5.The two models project different precipitation changes,characterized by a general increase in the BCC_CSM1.1,and broader areas with decrease in the RegCM4.0 simulations.
基金jointly supported by the National Basic Research Program of China(973 Program,Grant No.2015CB453203)the China Meteorological Special Project(Grant No.GYHY201406022)the LCS/CMA Open Funds for Young Scholars(2014)
文摘The Madden–Julian Oscillation(MJO)is a dominant mode of tropical intraseasonal variability(ISV)and has prominent impacts on the climate of the tropics and extratropics.Predicting the MJO using fully coupled climate system models is an interesting and important topic.This paper reports upon a recent progress in MJO ensemble prediction using the climate system model of the Beijing Climate Center,BCC-CSM1.1(m);specifically,the development of three different initialization schemes in the BCC ISV/MJO prediction system,IMPRESS.Three sets of 10-yr hindcasts were separately conducted with the three initialization schemes.The results showed that the IMPRESS is able to usefully predict the MJO,but is sensitive to the initialization scheme used and becomes better with the initialization of moisture.In addition,a new ensemble approach was developed by averaging the predictions generated from the different initialization schemes,helping to address the uncertainty in the initial values of the MJO.The ensemble-mean MJO prediction showed significant improvement,with a valid prediction length of about 20 days in terms of the different criteria,i.e.,a correlation score beyond 0.5,a RMSE lower than 1.414,or a mean square skill score beyond 0.This study indicates that utilizing the different initialization schemes of this climate model may be an efficient approach when forming ensemble predictions of the MJO.
基金jointly supported by the Special Fund for Meteorological Scientific Research in the Public Interest of China Meteorological Administration(GYHY201006022)the National Key Technologies R&D Program of China(2009BAC51B02)the National Basic Research Program of China(2010CB950304)
文摘This paper has two purposes. One is to evaluate the ability of an atmospheric general circulation model (IAP9L-AGCM) to predict summer rainfall over China one season in advance. The other is to propose a new approach to improve the predictions made by the model. First, a set of hindcast experiments for summer climate over China during 1982-2010 are performed from the perspective of real-time prediction with the IAP9L-AGCM model and the IAP ENSO prediction system. Then a new approach that effectively combines the hind-cast with its correction is proposed to further improve the model's predictive ability. A systematic evaluation reveals that the model's real-time predictions for 41 stations across China show significant improvement using this new approach, especially in the lower reaches between the Yellow River and Yangtze River valleys.
基金supported by the National Basic Research Program of China(Grant 2012CB955401)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant XDB03020600)
文摘In this paper,a hindcast study of the record-breaking rainfall event occurring in Beijing on 21July 2012,is conducted by using the Weather Research and Forecasting(WRF)model forced by National Centers for Environmental Prediction(NCEP)Global Forecasting System(GFS)outputs,paired with an investigation of the impact of topography in this region.The results indicate that WRF can reasonably predict the salient features of orographic precipitation;the 24-h rainfall amount and spatial distribution compare reasonably well with the observations.The hindcast simulation also indicates that rainfall events can be predicted approximately 36 h ahead.When the topography is removed,the spatial distribution of rainfall changes remarkably,suggesting the importance of the topography in determining rainfall structure.These results also indicate that prediction of such city-scale heavy rainfall events would benefit from a high-resolution prediction system.
基金supported by the National Basic Research Program of China (Grant No. 2012CB955401)the Special Fund for Public Welfare Industry (Grant No. GYHY201306026)the Key Laboratory of Oasis Ecology (KLOE) Open Fund (Grant No. XJDX02012012-04)
文摘The projected temperature and precipitation- change under different emissions scenarios using Coupled Model Intercomparison Project Phase 5 models over the northwestern arid regions of China (NWAC) were ana- lyzed using the ensemble of three high-resolution dy- namical downscaling simulations: the simulation of the Regional Climate Model version 4.0 (RegCM4) forced by the Beijing Climate Center Climate System Model version 1.1 (BCC_CSMI.1); the Hadley Centre Global En- vironmental Model version 3 regional climate model (HadGEM3-RA) forced by the Atmosphere-Ocean cou- pled HadGEM version 2 (HadGEM2-AO); and the Weather Research and Forecasting (WRF) model forced by the Norwegian community Earth System Model (NorESM1-M). Model validation indicated that the mul- timodel simulations reproduce the spatial and temporal distribution of temperature and precipitation well. The temperature is projected to increase over NWAC under both the 4.5 and 8.5 Representative Concentration Path- ways scenarios (RCP4.5 and RCP8.5, respectively) in the middle of the 21 st century, but the warming trend is larger under the RCP8.5 scenario, Precipitation shows a signifi- cant increasing trend in spring and winter under both RCP4.5 and RCPS.5; but in summer, precipitation is pro- jected to decrease in the Tarim Basin and Junggar Basin. The regional averaged temperature and precipitation show increasing trends in the future over NWAC; meanwhile, the large variability of the winter mean temperature and precipitation may induce more extreme cold events and intense snowfall events in these regions in the future.
基金This wort wag supported by National Natural Science Fund of China ( 70102007/G0202).
文摘With the development of individual consumption credit (ICC) in China, commercial banks have been exposed to more and more risks. The loan failure has been an important problem that the banking must face and revolve. This paper develops a factor system to explain how the borrower's risk is affected, and then establishes a risk monitoring model with AHP to pre-warn the banks how much the risk is.
基金supported by National Natural Science Foundation of China(Grant No.41130103)Special Fund for Public Welfare Industry(Meteorology)(Grant No.GYHY201306026)
文摘A global climate prediction system (PCCSM4) was developed based on the Community Climate System Model, version 4.0, developed by the National Center for Atmospheric Research (NCAR), and an initialization scheme was designed by our group. Thirty-year (1981-2010) one-month-lead retrospective summer climate ensemble predictions were carded out and analyzed. The results showed that PCCSM4 can efficiently capture the main characteristics of JJA mean sea surface temperature (SST), sea level pressure (SLP), and precipitation. The prediction skill for SST is high, especially over the central and eastern Pacific where the influence of E1 Nino-Southem Oscillation (ENSO) is dominant. Temporal correlation coefficients between the pre- dicted Nino3.4 index and observed Nino3.4 index over the 30 years reach 0.7, exceeding the 99% statistical significance level. The prediction of 500-hPa geopotential height, 850-hPa zonal wind and SLP shows greater skill than for precipitation. Overall, the predictability in PCCSM4 is much higher in the tropics than in global terms, or over East Asia. Furthermore, PCCSM4 can simulate the summer climate in typical ENSO years and the interannual variability of the Asian summer monsoon well. These preliminary results suggest that PCCSM4 can be applied to real-time prediction after further testing and improvement.
基金supported by the National Natural Science Foundation of China under Grant Nos. 60674022, 60736022 and 60821091
文摘Control invariant sets play a key role in model predictive control.Using Lyapunov function,a technique is proposed to design control invariant sets of planar systems in a precise form.First,itis designed for a linear system in Brunovsky canonical form.Then,the result is extended to generallinear systems.Finally,the nonlinear control systems are considered,and some sufficient conditionsand design techniques are also obtained.Numerical examples are presented to illustrate the proposeddesign methods.