期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
利用预测滤波法估计小卫星姿态角速度 被引量:6
1
作者 廖晖 周凤岐 周军 《西北工业大学学报》 EI CAS CSCD 北大核心 2001年第1期84-87,共4页
预测滤波法具有可直接处理线性或非线性模型、实时预测模型误差的优点。结合小卫星姿态运动学方程和预测滤波法 ,建立了简单的线性估计模型 ,实时估计姿态角速度 ,并保证了估计的最优性。仿真结果表明 ,对姿态角速度的估计精度较高 ,鲁... 预测滤波法具有可直接处理线性或非线性模型、实时预测模型误差的优点。结合小卫星姿态运动学方程和预测滤波法 ,建立了简单的线性估计模型 ,实时估计姿态角速度 ,并保证了估计的最优性。仿真结果表明 ,对姿态角速度的估计精度较高 ,鲁棒性好。 展开更多
关键词 微小卫星 预测滤波法 模型误差 姿态角速度 估计
下载PDF
T-K域倾角切除的预测滤波方法
2
作者 陈必远 李晓峰 《石油物探》 EI CSCD 北大核心 1997年第3期118-123,共6页
对低信噪比地震资料的处理来说,相干噪声及随机噪声的去除是一个很重要的环节。本文叙述了能同时去除相干噪声和随机噪声的T—K域倾角切除的预测滤波方法,该算法对低视速度相干噪声的切除有极好的效果。合成数据及实际资料的试算结果... 对低信噪比地震资料的处理来说,相干噪声及随机噪声的去除是一个很重要的环节。本文叙述了能同时去除相干噪声和随机噪声的T—K域倾角切除的预测滤波方法,该算法对低视速度相干噪声的切除有极好的效果。合成数据及实际资料的试算结果表明,该算法在去除随机噪声的同时,能很好的去除较低视速度的相干噪声。 展开更多
关键词 倾角切除 预测滤波法 地震数据处理 地震勘探
下载PDF
基于H-P滤波预测技术的年用电量预测模型研究 被引量:9
3
作者 曾鸣 陈春武 +2 位作者 刘洋 马明娟 钱霞 《水电能源科学》 北大核心 2012年第8期175-178,共4页
针对电力市场预测电力负荷受众多因素影响及各类预测模型模拟预测误差较大的问题,为提高负荷预测精度,基于H-P滤波预测法将等维信息法、指数回归模型及分布滞后回归模型引入年用电量预测中,通过双层预测降低预测误差,并结合实例比较。... 针对电力市场预测电力负荷受众多因素影响及各类预测模型模拟预测误差较大的问题,为提高负荷预测精度,基于H-P滤波预测法将等维信息法、指数回归模型及分布滞后回归模型引入年用电量预测中,通过双层预测降低预测误差,并结合实例比较。对比结果,滤波滞后回归模型的预测综合得分高于滤波指数回归模型。 展开更多
关键词 年用电量预测 H-P滤波预测 指数回归模型 分布滞后回归模型
下载PDF
反射声波测井波场分离方法研究 被引量:3
4
作者 宫昊 陈浩 +2 位作者 何晓 卫建清 王秀明 《测井技术》 CAS CSCD 2017年第3期260-265,共6页
在反射声波测井数据处理中,用于偏移成像的反射信号相对于高幅度井中直达波较为微弱,只有利用波场分离技术将反射波从全波形中提取出来,才能对反射信号进行成像处理。在不改变仪器构造与测量模式情况下,对广泛应用于偶极反射声波测井技... 在反射声波测井数据处理中,用于偏移成像的反射信号相对于高幅度井中直达波较为微弱,只有利用波场分离技术将反射波从全波形中提取出来,才能对反射信号进行成像处理。在不改变仪器构造与测量模式情况下,对广泛应用于偶极反射声波测井技术中的线性预测滤波法进行改进,在滤波过程中考虑偶极测井弯曲波频散的影响,结合慢度—时间相干法对井中直达波进行估计,并从全波形中滤除。通过油田实测数据处理证实,结合了慢度—时间相干法与线性预测滤波法的波场分离方法,较常规方法而言,井中弯曲波得到较大程度的压制,进而提高了反射声波测井的有效性。 展开更多
关键词 反射声波测井 波场分离 慢度-时间相干 线性预测滤波法
下载PDF
改进的Burg最大熵法在管道检测中的应用 被引量:6
5
作者 戴波 盛沙 +1 位作者 唐建 田小平 《传感技术学报》 CAS CSCD 北大核心 2007年第6期1416-1419,共4页
短时间序列、高分辨率、强抗噪能力的功率谱估计是管道超声内检测的关键技术.针对Burg最大熵法存在的问题,从减小递推算法初始阶段误差出发,提出二阶预测误差滤波器系数倒推法,由二阶滤波器系数修正一阶反射系数,保证递推初始阶段最大... 短时间序列、高分辨率、强抗噪能力的功率谱估计是管道超声内检测的关键技术.针对Burg最大熵法存在的问题,从减小递推算法初始阶段误差出发,提出二阶预测误差滤波器系数倒推法,由二阶滤波器系数修正一阶反射系数,保证递推初始阶段最大熵原则,以适应短时间序列谱估计,算法在管道内检测实验中得到了较好的结果. 展开更多
关键词 超声检测 功率谱估计 Burg最大熵 预测误差 二阶预测误差滤波器系数倒推算
下载PDF
一种新型信号奇异值预处理方法 被引量:2
6
作者 孙振华 田学民 《江南大学学报(自然科学版)》 CAS 2010年第4期423-426,共4页
随着变频器等大功率电子开关器件的广泛应用,电信号中电磁干扰现象越来越严重,数据采集系统实时数据中的奇异点增多,且其分布特征不明显,对于低成本小系统来说,一些先进的数据处理方法无法实施,而传统均值滤波法和中值滤波法等滤波效果... 随着变频器等大功率电子开关器件的广泛应用,电信号中电磁干扰现象越来越严重,数据采集系统实时数据中的奇异点增多,且其分布特征不明显,对于低成本小系统来说,一些先进的数据处理方法无法实施,而传统均值滤波法和中值滤波法等滤波效果往往不理想。对此,提出了一种新型的信号奇异值的预处理方法,即PMF(预测均值滤波)法。该方法通过计算信号的前向均值和后向均值来分析信号的趋势,并将这个趋势作为判断奇异值的依据。如果是奇异值则将现有数据舍弃并根据前面判断的趋势对信号进行插值;如果不是则保留原数据,最后再对新的数据序列作均值滤波。应用结果表明,信号经过PMF法处理后其特征性能和平滑性得到大幅度提高,具有较好的实用价值。 展开更多
关键词 奇异值 信号滤波 预测均值滤波
下载PDF
Modern Predictive Diagnostic Method of Induction Traction Motor Based on FEM, BEM
7
作者 Zygmunt Szymanski 《Computer Technology and Application》 2012年第10期678-684,共7页
The paper presents a mathematical model of special construction induction traction motor. On the base of predictive filtering, analytical studies, fuzzy logic control, relying on the virtual data generated by FEM (Fi... The paper presents a mathematical model of special construction induction traction motor. On the base of predictive filtering, analytical studies, fuzzy logic control, relying on the virtual data generated by FEM (Finite Element Method) and BEM (Boundary Element Method) is detected faults of induction motor. Digital predictive filter is used to separate a fundamental harmonic from spectrum current and voltage harmonics. Fuzzy logic control is used to identify a motor state. Magnetic fields distribution in the traction motor, of the wheel vehicle is presented in the paper. Modem diagnostics method has been used for faulty motor simulation and shows results of motor fault effects. Some computer programs were applied in calculation of magnetic fields distribution. On the base of magnetic field distributions were analyzed different failures situations. Some laboratory experiments realized for induction traction motor were verified by results of computer calculations. 展开更多
关键词 Induction traction motor magnetic field distribution predictive diagnostic system.
下载PDF
Forecasting the Coke Price Based on the Kalman Filtering Algorithm 被引量:1
8
作者 朱美峰 赵国浩 《Journal of Resources and Ecology》 CSCD 2015年第1期60-64,共5页
Research on coke price forecasting is of theoretical and practical signiifcance. Here, the Kalman ifltering algorithm was used to analyze the price of coke. As the only state variable, the historical coke price is sor... Research on coke price forecasting is of theoretical and practical signiifcance. Here, the Kalman ifltering algorithm was used to analyze the price of coke. As the only state variable, the historical coke price is sorted out to build the state space model. The algorithm makes use of innovation composed of the difference between observed and predicted values, and alows us to obtain the optimal estimated value of the coke price via continuous updating and iteration of innovation. Our results show that this algorithm is effective in the ifeld of coke price tracking and forecasting. 展开更多
关键词 coke price forecasting state space model Kalman filtering algorithm
原文传递
Empirical modeling of ionospheric F2 layer critical frequency over Wakkanai under geomagnetic quiet and disturbed conditions 被引量:4
9
作者 LIU Jing LIU LiBo +2 位作者 ZHAO BiQiang WAN WeiXing CHEN YiDing 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第5期1169-1177,共9页
The hourly values of the ionospheric F2 layer critical frequency, foF2, recorded at Wakkanai ionosonde station (45.4°N, 141.7°E) have been collected to construct a middle-latitude single-station model for ... The hourly values of the ionospheric F2 layer critical frequency, foF2, recorded at Wakkanai ionosonde station (45.4°N, 141.7°E) have been collected to construct a middle-latitude single-station model for forecasting foF2 under geomagnetic quiet and disturbed conditions. The module for the geomagnetic quiet conditions incorporates local time, seasonal, and solar vari- ability of climatological foF2 and its upper and lower quartiles. It is the first attempt to predict the upper and lower quartiles of foF2 to account for the notable day-to-day variability in ionospheric foF2. The validation statistically verifies that the model captures the climatological variations of foF2 with higher accuracy than IRI does. The storm-time module is built to capture the geomagnetic storm induced relative deviations of foF2 from the quiet time references. In the geomagnetically disturbed module, the storm-induced deviations are described by diumal and semidiumal waves, which are modulated by a modified magnetic activity index, the Kf index, reflecting the delayed responses of foF2 to geomagnetic activity forcing. The coeffi- cients of the model in each month are determined by fitting the model formula to the observation in a least-squares way. We provide two options for the geomagnetic disturbed module, including or not including Kalman filter algorithm. The Kalman filter algorithm is introduced to optimize these coefficients in real time. Our results demonstrate that the introduction of the Kalman filter algorithm in the storm time module is promising for improving the accuracy of predication. In addition, comparisons indicate that the IRI model prediction of the F2 layer can be improved to provide better performances over this region. 展开更多
关键词 Empirical modeling Kalman f'dter ionospheric storm
原文传递
Forecasting the Ethiopian Coffee Price Using Kalman Filtering Algorithm 被引量:2
10
作者 Tesfahun Berhane Nurilign Shibabaw +2 位作者 Aemiro Shibabaw Molalign Adam Abera A.Muhamed 《Journal of Resources and Ecology》 CSCD 2018年第3期302-305,共4页
Ethiopian coffee price is highly fluctuated and has significant effect on the economy of the country. Conducting a research on forecasting coffee price has theoretical and practical importance.This study aims at forec... Ethiopian coffee price is highly fluctuated and has significant effect on the economy of the country. Conducting a research on forecasting coffee price has theoretical and practical importance.This study aims at forecasting the coffee price in Ethiopia. We used daily closed price data of Ethiopian coffee recorded in the period 25 June 2008 to 5 January 2017 obtained from Ethiopia commodity exchange(ECX) market to analyse coffee prices fluctuation. Here, the nature of coffee price is non-stationary and we apply the Kalman filtering algorithm on a single linear state space model to estimate and forecast an optimal value of coffee price. The performance of the algorithm for estimating and forecasting the coffee price is evaluated by using root mean square error(RMSE). Based on the linear state space model and the Kalman filtering algorithm, the root mean square error(RMSE) is 0.000016375, which is small enough, and it indicates that the algorithm performs well. 展开更多
关键词 coffee price forecasting state space model Kalman filtering algorithm ETHIOPIAN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部