A high resolution speed and position identification algorithm, suitable for brushless DC drives, is presented in this paper. In particular, the algorithm is proposed for BLDC (brushless DC) machines that are charact...A high resolution speed and position identification algorithm, suitable for brushless DC drives, is presented in this paper. In particular, the algorithm is proposed for BLDC (brushless DC) machines that are characterized by an un-ideal trapezoidal emfs shape. The algorithm, which is developed basing upon the MRAS technique (model reference adaptive system) and the Popov's hyperstability criterion, guarantees the convergence of the estimated rotor speed and position signals to their corresponding actual values. The identification procedure can be performed starting from the knowledge of low resolution rotor position signals, phase currents and the BLDC emfs shape. The identification algorithm is properly tested on a BLDC drive controlled by a predictive algorithm, by performing a simulation study in the Matlab-Simulink environment. The corresponding results have highlighted the effectiveness of the proposed sensorless predictive control system, at both low and high speed operation.展开更多
A predictive current control algorithm for the Buck-Boost DC-DC converter is presented in this paper. The continuous time model of the system is properly introduced, then, by imposing a proper PWM modulation pattern, ...A predictive current control algorithm for the Buck-Boost DC-DC converter is presented in this paper. The continuous time model of the system is properly introduced, then, by imposing a proper PWM modulation pattern, its discrete time model is achieved. This last one is successfully employed in determining the steady state locus of the Buck-Boost converter, both in CCM (continuous conduction mode) and DCM (discontinuous conduction mode). A novel continuous time equivalent circuit of the converter is introduced too, with the aim of determining a ripple free representation of the state variables of the system, over both transient and steady state operation. Then, a predictive current control algorithm, suitable in both CCM and DCM, is developed and properly checked by means of computer simulations. The corresponding results have highlighted the effectiveness of the proposed modelling and of the predictive control algorithm, both in CCM and DCM.展开更多
文摘A high resolution speed and position identification algorithm, suitable for brushless DC drives, is presented in this paper. In particular, the algorithm is proposed for BLDC (brushless DC) machines that are characterized by an un-ideal trapezoidal emfs shape. The algorithm, which is developed basing upon the MRAS technique (model reference adaptive system) and the Popov's hyperstability criterion, guarantees the convergence of the estimated rotor speed and position signals to their corresponding actual values. The identification procedure can be performed starting from the knowledge of low resolution rotor position signals, phase currents and the BLDC emfs shape. The identification algorithm is properly tested on a BLDC drive controlled by a predictive algorithm, by performing a simulation study in the Matlab-Simulink environment. The corresponding results have highlighted the effectiveness of the proposed sensorless predictive control system, at both low and high speed operation.
文摘A predictive current control algorithm for the Buck-Boost DC-DC converter is presented in this paper. The continuous time model of the system is properly introduced, then, by imposing a proper PWM modulation pattern, its discrete time model is achieved. This last one is successfully employed in determining the steady state locus of the Buck-Boost converter, both in CCM (continuous conduction mode) and DCM (discontinuous conduction mode). A novel continuous time equivalent circuit of the converter is introduced too, with the aim of determining a ripple free representation of the state variables of the system, over both transient and steady state operation. Then, a predictive current control algorithm, suitable in both CCM and DCM, is developed and properly checked by means of computer simulations. The corresponding results have highlighted the effectiveness of the proposed modelling and of the predictive control algorithm, both in CCM and DCM.