To solve the problem that the signal sparsity level is time-varying and not known as a priori in most cases,a signal sparsity level prediction and optimal sampling rate determination scheme is proposed.The discrete-ti...To solve the problem that the signal sparsity level is time-varying and not known as a priori in most cases,a signal sparsity level prediction and optimal sampling rate determination scheme is proposed.The discrete-time Markov chain is used to model the signal sparsity level and analyze the transition between different states.According to the current state,the signal sparsity level state in the next sampling period and its probability are predicted.Furthermore,based on the prediction results,a dynamic control approach is proposed to find out the optimal sampling rate with the aim of maximizing the expected reward which considers both the energy consumption and the recovery accuracy.The proposed approach can balance the tradeoff between the energy consumption and the recovery accuracy.Simulation results show that the proposed dynamic control approach can significantly improve the sampling performance compared with the existing approach.展开更多
Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semicon...Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method.展开更多
Analysis of functional diversity, based on plant traits and community structure, provides a promising approach for exploration of the adaptive strategies of plants and the relationship between plant traits and ecosyst...Analysis of functional diversity, based on plant traits and community structure, provides a promising approach for exploration of the adaptive strategies of plants and the relationship between plant traits and ecosystem functioning. However, it is unclear how the number of plant traits included influences functional diversity, and whether or not there are quantitatively dependent traits. This information is fundamental to the correct use of functional diversity metrics. Here, we measured 34 traits of 366 plant species in nine forests from the tropical to boreal zones in China. These traits were used to calculate seven functional diversity metrics: functional richness(functional attribute diversity(FAD), modified FAD(MFAD), convex hull hypervolume(FRic)), functional evenness(FEve), and functional divergence(functional divergence(FDiv), functional dispersion(FDis), quadratic entropy(Rao Q)). Functional richness metrics increased with an increase in trait number, whereas the relationships between the trait divergence indexes(FDiv and FDis) and trait number were inconsistent. Four of the seven functional diversity indexes(FAD, MFAD, FRic, and RaoQ) were comparable with those in previous studies, showing predictable trends with a change in trait number. We verified our hypothesis that the number of traits strongly influences functional diversity. The relationships between these predictable functional diversity metrics and the number of traits facilitated the development of a standard protocol to enhance comparability across different studies. These findings can support integration of functional diversity index data from different studies at the site to the regional scale, and they focus attention on the influence of quantitative selection of traits on functional diversity analysis.展开更多
Based on both white response and connotation expression are geometric progression in the most primitive grey differential equation of GM(1,1)x(k) (k)+ ax(1) (k) = b, this paper begins with generation of the...Based on both white response and connotation expression are geometric progression in the most primitive grey differential equation of GM(1,1)x(k) (k)+ ax(1) (k) = b, this paper begins with generation of the time response .function's grey derivative at discrete points. Through derivative's definition, establishing a new GM(1,1) by optimizing grey derivative and background value. Then, getting the best coefficient c by introducing criterion function and it has proved that the new expression has the whitened exponent law coincident property and the whitened coefficient coincident property in theory. Finally, some examples show the new model has higher prediction precision.展开更多
基金Innovation Funds for Outstanding Graduate Students in School of Information and Communication Engineering in BUPTthe National Natural Science Foundation of China(No.61001115, 61271182)
文摘To solve the problem that the signal sparsity level is time-varying and not known as a priori in most cases,a signal sparsity level prediction and optimal sampling rate determination scheme is proposed.The discrete-time Markov chain is used to model the signal sparsity level and analyze the transition between different states.According to the current state,the signal sparsity level state in the next sampling period and its probability are predicted.Furthermore,based on the prediction results,a dynamic control approach is proposed to find out the optimal sampling rate with the aim of maximizing the expected reward which considers both the energy consumption and the recovery accuracy.The proposed approach can balance the tradeoff between the energy consumption and the recovery accuracy.Simulation results show that the proposed dynamic control approach can significantly improve the sampling performance compared with the existing approach.
基金Supported by the National Key Basic Research and Development Program of China (2009CB320602)the National Natural Science Foundation of China (60834004, 61025018)+2 种基金the Open Project Program of the State Key Lab of Industrial ControlTechnology (ICT1108)the Open Project Program of the State Key Lab of CAD & CG (A1120)the Foundation of Key Laboratory of System Control and Information Processing (SCIP2011005),Ministry of Education,China
文摘Semiconductor manufacturing (SM) system is one of the most complicated hybrid processes involved continuously variable dynamical systems and discrete event dynamical systems. The optimization and scheduling of semiconductor fabrication has long been a hot research direction in automation. Bottleneck is the key factor to a SM system, which seriously influences the throughput rate, cycle time, time-delivery rate, etc. Efficient prediction for the bottleneck of a SM system provides the best support for the consequent scheduling. Because categorical data (product types, releasing strategies) and numerical data (work in process, processing time, utilization rate, buffer length, etc.) have significant effect on bottleneck, an improved adaptive network-based fuzzy inference system (ANFIS) was adopted in this study to predict bottleneck since conventional neural network-based methods accommodate only numerical inputs. In this improved ANFIS, the contribution of categorical inputs to firing strength is reflected through a transformation matrix. In order to tackle high-dimensional inputs, reduce the number of fuzzy rules and obtain high prediction accuracy, a fuzzy c-means method combining binary tree linear division method was applied to identify the initial structure of fuzzy inference system. According to the experimental results, the main-bottleneck and sub-bottleneck of SM system can be predicted accurately with the proposed method.
基金The National Natural Science Foundation of China (31872683,31800368)The National Key Research and Development Program of China (2017YFA0604803)。
文摘Analysis of functional diversity, based on plant traits and community structure, provides a promising approach for exploration of the adaptive strategies of plants and the relationship between plant traits and ecosystem functioning. However, it is unclear how the number of plant traits included influences functional diversity, and whether or not there are quantitatively dependent traits. This information is fundamental to the correct use of functional diversity metrics. Here, we measured 34 traits of 366 plant species in nine forests from the tropical to boreal zones in China. These traits were used to calculate seven functional diversity metrics: functional richness(functional attribute diversity(FAD), modified FAD(MFAD), convex hull hypervolume(FRic)), functional evenness(FEve), and functional divergence(functional divergence(FDiv), functional dispersion(FDis), quadratic entropy(Rao Q)). Functional richness metrics increased with an increase in trait number, whereas the relationships between the trait divergence indexes(FDiv and FDis) and trait number were inconsistent. Four of the seven functional diversity indexes(FAD, MFAD, FRic, and RaoQ) were comparable with those in previous studies, showing predictable trends with a change in trait number. We verified our hypothesis that the number of traits strongly influences functional diversity. The relationships between these predictable functional diversity metrics and the number of traits facilitated the development of a standard protocol to enhance comparability across different studies. These findings can support integration of functional diversity index data from different studies at the site to the regional scale, and they focus attention on the influence of quantitative selection of traits on functional diversity analysis.
文摘Based on both white response and connotation expression are geometric progression in the most primitive grey differential equation of GM(1,1)x(k) (k)+ ax(1) (k) = b, this paper begins with generation of the time response .function's grey derivative at discrete points. Through derivative's definition, establishing a new GM(1,1) by optimizing grey derivative and background value. Then, getting the best coefficient c by introducing criterion function and it has proved that the new expression has the whitened exponent law coincident property and the whitened coefficient coincident property in theory. Finally, some examples show the new model has higher prediction precision.