期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向新能源功率多时空尺度精确预测的机制创新与平台建设探索 被引量:4
1
作者 王皓怀 邓韦斯 +3 位作者 戴仲覆 谢平平 刘显茁 王凌梓 《南方电网技术》 CSCD 北大核心 2023年第2期3-10,共8页
构建以“新能源”为主体的新型电力系统迫切需要从全网统筹的角度对新能源功率进行更加精确化的预测和预测结果实用化的应用,以此提高大电网接纳高比例新能源能力、改善电力系统运行安全性与经济性。立足以调度实际需求为导向,以解决问... 构建以“新能源”为主体的新型电力系统迫切需要从全网统筹的角度对新能源功率进行更加精确化的预测和预测结果实用化的应用,以此提高大电网接纳高比例新能源能力、改善电力系统运行安全性与经济性。立足以调度实际需求为导向,以解决问题成效为衡量标准,以“开放、高效、实用”的理念、机制革新实现科技创新,提出一种调度机构视角下新能源多时空尺度精确预测的机制创新探索及创新平台的实施方案。从顶层设计、机制创新思考及创新平台的架构和主要功能等多方面展开探讨,力求依托技术、管理双创新,探索调度机构实施新能源功率预测水平提升的新路径。 展开更多
关键词 新能源功率预测 新型电力系统 多时空尺度 实用化 创新机制 预测精度提升
下载PDF
基于AUV的航迹追踪自适应UKF算法 被引量:1
2
作者 邓非 尹洪东 段梦兰 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第1期98-109,共12页
无迹卡尔曼滤波算法(UKF,unscented kalman filter)是一种常见的(AUV,autonomous underwater vehicle)加权统计线性回归航迹追踪算法,其算法冗余度低于(EKF,extended kalman filter)、(PF,particle filter)及(PSO,particle swarm optimi... 无迹卡尔曼滤波算法(UKF,unscented kalman filter)是一种常见的(AUV,autonomous underwater vehicle)加权统计线性回归航迹追踪算法,其算法冗余度低于(EKF,extended kalman filter)、(PF,particle filter)及(PSO,particle swarm optimization)等数值优化算法,且算法效率较高。然而,UKF控制算法中的系统采样时间间隔通常会被设置为常数,由此可能会产生预测值的误差累积,从而影响导航预测结果的精度。因此,笔者提出了基于AUV的航迹追踪自适应无迹卡尔曼滤波算法(AUKF,adaptive unscented kalamn filter algorithm),以期降低预测算法的累积误差。该预测方法依据标准UKF算法的原理,通过构造相应的约束、判断与反馈机制,调整系统状态方程中每一步的采样间隔t,从而提升算法的航迹追踪精度并减少过程噪声及传感器噪声对预测过程的影响。最后,通过仿真实验与结果对比,近一步验证了之前所提出的设想。 展开更多
关键词 自治水下机器人 AUKF算法 航迹预测精度提升 自适应采样间隔 改善降噪性能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部