期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
失业风险预警系统研究 被引量:11
1
作者 陈仲常 吴永球 《当代财经》 CSSCI 北大核心 2008年第5期5-10,共6页
基于我国29年的历史数据,采用BP神经网络模型对我国的失业风险预警问题进行研究。结果表明,神经网络方法在失业风险系统中具有优良的预警效果,其对失业风险综合警情值的预测误差小于3%。相对于景气分析预测法、时间序列分析、灰色预测... 基于我国29年的历史数据,采用BP神经网络模型对我国的失业风险预警问题进行研究。结果表明,神经网络方法在失业风险系统中具有优良的预警效果,其对失业风险综合警情值的预测误差小于3%。相对于景气分析预测法、时间序列分析、灰色预测模型以及回归预测模型等技术,神经网络方法不仅具有良好的预测精度,同时还具备较强的容错能力和泛化能力。因此,在构建我国的失业风险预警系统中,神经网络模型应该是一种被优先考虑的方法。 展开更多
关键词 失业 风险预警 BP神经网络模型 综合警情值 预测误差率
下载PDF
我国上市公司中期财务报告预测价值研究 被引量:4
2
作者 谭燕 黄钰新 李昭 《中国会计评论》 2004年第2期339-362,共24页
中期财务报告是上市公司强制性信息披露的重要组成部分。本文以我国A股上市公司的中期财务报告为研究对象,采用三种不同的方法分析我国中期财务报告预测价值,并在此基础上,考察影响我国中期财务报告预测价值的一些系统性差异。数据检验... 中期财务报告是上市公司强制性信息披露的重要组成部分。本文以我国A股上市公司的中期财务报告为研究对象,采用三种不同的方法分析我国中期财务报告预测价值,并在此基础上,考察影响我国中期财务报告预测价值的一些系统性差异。数据检验的结果表明:我国中期财务报告相对于年度财务报告具有较高的预测价值。中期审计确实有利于提高中期盈利指标的预测价值。普通上市公司中期主营业务收入净额数据的预测价值好于ST、PT上市公司中期主营业务收入数据的预测价值,但普通上市公司中期EPS预测价值并不显著优于ST、PT上市公司中期EPS的预测价值。 展开更多
关键词 中期财务报告 预测价值 预测能力 预测误差 预测误差率
原文传递
Dynamic-statistics combined forecast scheme based on the abrupt decadal change component of summer precipitation in East Asia 被引量:8
3
作者 GONG ZhiQiang ZHAO JunHu +1 位作者 FENG GuoLin CHOU JiFan 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第3期404-419,共16页
Based on the 1983~2011 CMAP data,the precipitation anomaly in East Asia and its nearby sea regions(hereafter called East Asia for short) demonstrates the "+-+" pattern before 1999 and the "-+-" pattern afterw... Based on the 1983~2011 CMAP data,the precipitation anomaly in East Asia and its nearby sea regions(hereafter called East Asia for short) demonstrates the "+-+" pattern before 1999 and the "-+-" pattern afterwards; this decadal change is contained principally in the corresponding EOF3 component.However,the NCC_CGCM forecast results are quite different,which reveal the "+-+-" pattern before 1999 and the "-+-+" pattern afterwards.Meanwhile,the probability of improving NCC_CGCM's forecast accuracy based on these key SST areas is discussed,and the dynamic-statistics combined forecast scheme is constructed for increasing the information of decadal change contained in the summer precipitation in East Asia.The independent sample forecast results indicate that this forecasting scheme can effectively modify the NCC_CGCM's decadal change information contained in the summer precipitation in East Asia(especially in the area of 30°N–55°N).The ACC is 0.25 and ACR is 61% for the forecasting result based on the V SST area,and the mean ACC is 0.03 and ACR is 51% for the seven key areas,which are better than NCC_CGCM's system error correction results(ACC is -0.01 and ACR is 49%).Besides,the modified forecast results also provide the information that the precipitation anomaly in East Asia mainly shows the "+-+" pattern before 1999 and the "-+-" pattern afterwards. 展开更多
关键词 abrupt decadal change dynamic-statistics combined forecast scheme summer precipitation East Asia sea surface temperature
原文传递
Prediction of thermal conductivity of polymer-based composites by using support vector regression 被引量:2
4
作者 WANG GuiLian CAI CongZhong +1 位作者 PEI JunFang ZHU XingJian 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第5期878-883,共6页
Support vector regression (SVR) combined with particle swarm optimization (PSO) for its parameter optimization, was proposed to establish a model to predict the thermal conductivity of polymer-based composites under d... Support vector regression (SVR) combined with particle swarm optimization (PSO) for its parameter optimization, was proposed to establish a model to predict the thermal conductivity of polymer-based composites under different mass fractions of fillers (mass fraction of polyethylene (PE) and mass fraction of polystyrene (PS)). The prediction performance of SVR was compared with those of other two theoretical models of spherical packing and flake packing. The result demonstrated that the estimated errors by leave-one-out cross validation (LOOCV) test of SVR models, such as mean absolute error (MAE) and mean absolute percentage error (MAPE), all are smaller than those achieved by the two theoretical models via applying identical samples. It is revealed that the generalization ability of SVR model is superior to those of the two theoretical models. This study suggests that SVR can be used as a powerful approach to foresee the thermal property of polymer-based composites under different mass fractions of polyethylene and polystyrene fillers. 展开更多
关键词 polymer matrix composites thermal conductivity support vector regression regression analysis PREDICTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部