期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进递推预测误差神经网络算法的极点配置PID控制方法 被引量:2
1
作者 吴平景 王银河 陈浩广 《广东工业大学学报》 CAS 2015年第4期112-117,共6页
针对工业控制中系统模型参数通常未知的特点,利用改进递推预测误差算法为基础的神经网络系统参数辨识方法,设计了极点配置自校正数字PID控制器.相比于基于梯度学习算法的神经网络辨识方法和通常的PID控制器,该方法具有参数辨识结构简单... 针对工业控制中系统模型参数通常未知的特点,利用改进递推预测误差算法为基础的神经网络系统参数辨识方法,设计了极点配置自校正数字PID控制器.相比于基于梯度学习算法的神经网络辨识方法和通常的PID控制器,该方法具有参数辨识结构简单、神经元权值调整可持续且计算速度快、所采用的数字PID控制器鲁棒性强等优点.最后的数值仿真结果验证了本文算法及控制方法的有效性. 展开更多
关键词 改进递推预测误差算法 神经网络 极点配置自校正PID
下载PDF
基于同伦(homotopy)关系的ARMAX模型的辨识算法 被引量:1
2
作者 周占川 胡敬炉 《系统工程学报》 CSCD 2002年第3期199-206,共8页
论述了采用同伦 (hom otopy)法辨识 ARMAX模型的问题 .在 ARMAX模型的辨识中 ,由于滑动平均(MA)噪音模型部分的存在 ,用以估计 ARMAX模型参数的误差函数不再是单峰的 ,因而常用的基于最优化的估计算法有被陷入局部最小点的危险 .本文提... 论述了采用同伦 (hom otopy)法辨识 ARMAX模型的问题 .在 ARMAX模型的辨识中 ,由于滑动平均(MA)噪音模型部分的存在 ,用以估计 ARMAX模型参数的误差函数不再是单峰的 ,因而常用的基于最优化的估计算法有被陷入局部最小点的危险 .本文提出一种基于同伦关系的算法来解决这个问题 ,其基本想法是建立 ARMAX模型参数的估计和 ARX模型参数的估计两者之间的同伦关系 .由于用以估计 ARX模型参数的误差函数是单峰的 ,因而没有局部最小点问题 ,这就使得有可能利用它们之间的同伦关系来解决 ARMAX模型参数的估计中的局部最小点问题 .详细描述了基于同伦关系的新辨识算法 ,并利用蒙特卡罗 (Monte Car-lo) 展开更多
关键词 ARMAX模型 预测误差算法 多峰性问题 同伦关系 系统辨识 遗传算法
下载PDF
Spectroscopic Multicomponent Analysis Using Multi-objective Optimization for Variable Selection 被引量:1
3
作者 Anderson da Silva Soares Telma Woerle de Lima +3 位作者 Daniel Vitor de LuPcena Rogerio Lopes Salvini GustavoTeodoro Laureano Clarimar Jose Coelho 《Computer Technology and Application》 2013年第9期466-475,共10页
The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. The... The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. These variables are obtained by a spectrophotometer device. This device measures hundreds of correlated variables related with physicocbemical properties and that can be used to estimate the component of interest. The problem is the selection of a subset of informative and uncorrelated variables that help the minimization of prediction error. Classical algorithms select a subset of variables for each compound considered. In this work we propose the use of the SPEA-II (strength Pareto evolutionary algorithm II). We would like to show that the variable selection algorithm can selected just one subset used for multiple determinations using multiple linear regressions. For the case study is used wheat data obtained by NIR (near-infrared spectroscopy) spectrometry where the objective is the determination of a variable subgroup with information about E protein content (%), test weight (Kg/HI), WKT (wheat kernel texture) (%) and farinograph water absorption (%). The results of traditional techniques of multivariate calibration as the SPA (successive projections algorithm), PLS (partial least square) and mono-objective genetic algorithm are presents for comparisons. For NIR spectral analysis of protein concentration on wheat, the number of variables selected from 775 spectral variables was reduced for just 10 in the SPEA-II algorithm. The prediction error decreased from 0.2 in the classical methods to 0.09 in proposed approach, a reduction of 37%. The model using variables selected by SPEA-II had better prediction performance than classical algorithms and full-spectrum partial least-squares. 展开更多
关键词 Multi-objective algorithms variable selection linear regression.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部