The flame structure of gasoline engine is complicated and has the characteristic of fractal geometry. A fractal combustion model was used to simulate the engine working cycle. Based on this model, the fractal dimensio...The flame structure of gasoline engine is complicated and has the characteristic of fractal geometry. A fractal combustion model was used to simulate the engine working cycle. Based on this model, the fractal dimension and laminar flame surface area of turbulent premixed flames were studied under different working conditions. The experimental system mainly includes an optical engine and a set of photography equipment used to shoot the images of turbulent flame of spark-ignition engine. The difference box-counting method was used to process 2D combustion images. In contrast to the experimental results, the computational results show that the fractal combustion model is an effective method of simulating the engine combustion process. The study provides a better understanding for flame structure and its propagation.展开更多
Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen(GO2/GH2) as propellants. During the combustion process, several ...Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen(GO2/GH2) as propellants. During the combustion process, several spatially and time- resolved non-intrusive optical techniques, such as OH planar laser induced fluorescence(PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.展开更多
基金Supported by National Natural Science Foundation of China (No. 50876072) Tianjin Municipal Science and Technology Commission (No. 07JCYBJC03900 )
文摘The flame structure of gasoline engine is complicated and has the characteristic of fractal geometry. A fractal combustion model was used to simulate the engine working cycle. Based on this model, the fractal dimension and laminar flame surface area of turbulent premixed flames were studied under different working conditions. The experimental system mainly includes an optical engine and a set of photography equipment used to shoot the images of turbulent flame of spark-ignition engine. The difference box-counting method was used to process 2D combustion images. In contrast to the experimental results, the computational results show that the fractal combustion model is an effective method of simulating the engine combustion process. The study provides a better understanding for flame structure and its propagation.
文摘Single-element combustor experiments are conducted for three shear coaxial geometry configuration injectors by using gaseous oxygen and gaseous hydrogen(GO2/GH2) as propellants. During the combustion process, several spatially and time- resolved non-intrusive optical techniques, such as OH planar laser induced fluorescence(PLIF), high speed imaging, and infrared imaging, are simultaneously employed to observe the OH radical concentration distribution, flame fluctuations, and temperature fields. The results demonstrate that the turbulent flow phenomenon of non-premixed flame exhibits a remarkable periodicity, and the mixing ratio becomes a crucial factor to influence the combustion flame length. The high speed and infrared images have a consistent temperature field trend. As for the OH-PLIF images, an intuitionistic local flame structure is revealed by single-shot instantaneous images. Furthermore, the means and standard deviations of OH radical intensity are acquired to provide statistical information regarding the flame, which may be helpful for validation of numerical simulations in future. Parameters of structure configurations, such as impinging angle and oxygen post thickness, play an important role in the reaction zone distribution. Based on a successful flame contour extraction method assembled with non-linear anisotropic diffusive filtering and variational level-set, it is possible to implement a fractal analysis to describe the fractal characteristics of the non-premixed flame contour. As a result, the flame front cannot be regarded as a fractal object. However, this turbulent process presents a self-similarity characteristic.