Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-a...Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-axis dynamic model coupled was established under the tooth friction force and solved by the perturbation method to compute real dynamic tooth load. The change laws of the friction force and friction torque were obtained in a meshing period. The transmission error formulation was analyzed to introduce meshing excitations. The maximum dynamic transmission error, the maximum meshing force and the maximum dynamic factor were calculated under different speeds, external loads and damping factors. The conclusions can provide theoretical basis for the gear design especially in tooth profile correction.展开更多
The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a predicti...The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.展开更多
Liquid film flow widely exists in industries due to its high thermal film is strongly influenced by the properties of the working surface efficiency and low flow flux. The spreading of the liquid A biomimetic surface ...Liquid film flow widely exists in industries due to its high thermal film is strongly influenced by the properties of the working surface efficiency and low flow flux. The spreading of the liquid A biomimetic surface with multi-scale structures inspired by the skin of a dog's tongue is proposed in this paper for the enhancement of heat and mass transfer. The spreading and flow behaviors of a gravity-driven liquid falling down the pre-wetted biomimetic surface are compared with that on the smooth sur- faces, via the combination of numerical simulations using the volume of fluid (VOF) method, and experimental measurements using high-speed imaging. On the pre-wetted smooth substrate, liquid merges with two droplets before the free surface of the liquid slowly develops into a parabolic shape. In contrast, on the biomimetic surface, liquid rapidly and uniformly spreads into a thin film which could effectively enhance mass transfer in both spanwise and streamwise directions. The characteristics and distribution of the microstructures on the proposed biomimetic surface are potentially to be used to guide the design of the surface in high efficiency heat exchangers and reactors.展开更多
We introduce here a work package for a National Natural Science Foundation of China Major Project. We propose to develop computational methodology starting from the theory of electronic excitation processes to predict...We introduce here a work package for a National Natural Science Foundation of China Major Project. We propose to develop computational methodology starting from the theory of electronic excitation processes to predicting the opto-electronic property for organic materials, in close collaborations with experiments. Through developing methods for the electron dynamics, considering superexchange electronic couplings, spin-orbit coupling elements between excited states, electron-phonon relaxation, intermolecular Coulomb and exchange terms we combine the statistical physics approaches including dynamic Monte Carlo, Boltzmann transport equation and Boltzmann statistics to predict the macroscopic properties of opto-electronic materials such as light-emitting efficiency, charge mobility, and exciton diffusion length. Experimental synthesis and characterization of D-A type ambipolar transport material as well as novel carbon based material will provide a test ground for the verification of theory.展开更多
Epilepsy is a chronic nervous disease with increasing incidence worldwide,while the accurate localization of epileptic focus and the corresponding treatment are still challenging due to the lack of effective tools to ...Epilepsy is a chronic nervous disease with increasing incidence worldwide,while the accurate localization of epileptic focus and the corresponding treatment are still challenging due to the lack of effective tools to monitor and modulate the related brain neurological activities.In this work,stretchable micro electrocorticogram(mECoG)electrodes are developed and used to investigate penicillininduced epilepsy in rats.The electrodes possess excellent stretchability,conformality,anti-interference ability and sufficient resolution to successfully monitor electroencephalogram(EEG)signals,which is superior to traditional rigid polyimide-based electrodes.Characteristic epileptic spike waves are detected and analyzed to study the epileptic focus and electrical stimulus effects during epileptic seizures.It is found that the spike waves occur first in the visual cortex which is likely to be the epileptic focus.Epileptic spike wave frequency quickly increases to 1.07 Hz where it reaches a plateau and remains stable.There is no dominant brain hemisphere that would show early warning of epileptic seizures.Electrical stimuli for various times are applied after administering penicillin.It is found that 15 min of electrical stimulus has the best restraining effect on epileptic seizures.The mECoG electrodes developed in this study show potentials for applications in stretchable biomedical devices.展开更多
基金Supported by National Basic Research Program of China("973"Program,No.2013CB632305)
文摘Monte Carlo method was adopted to calculate the meshing error considering the manufacture error and assembly error of the meshing point along the time-varying contact line for helical gear pair. The flexural-torsion-axis dynamic model coupled was established under the tooth friction force and solved by the perturbation method to compute real dynamic tooth load. The change laws of the friction force and friction torque were obtained in a meshing period. The transmission error formulation was analyzed to introduce meshing excitations. The maximum dynamic transmission error, the maximum meshing force and the maximum dynamic factor were calculated under different speeds, external loads and damping factors. The conclusions can provide theoretical basis for the gear design especially in tooth profile correction.
基金Projects(90815025,51178034) supported by the National Natural Science Foundation of China
文摘The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.
基金supported by the National Natural Science Foundation of China(Grant Nos.51575227,U1134109,51106062&51206058)
文摘Liquid film flow widely exists in industries due to its high thermal film is strongly influenced by the properties of the working surface efficiency and low flow flux. The spreading of the liquid A biomimetic surface with multi-scale structures inspired by the skin of a dog's tongue is proposed in this paper for the enhancement of heat and mass transfer. The spreading and flow behaviors of a gravity-driven liquid falling down the pre-wetted biomimetic surface are compared with that on the smooth sur- faces, via the combination of numerical simulations using the volume of fluid (VOF) method, and experimental measurements using high-speed imaging. On the pre-wetted smooth substrate, liquid merges with two droplets before the free surface of the liquid slowly develops into a parabolic shape. In contrast, on the biomimetic surface, liquid rapidly and uniformly spreads into a thin film which could effectively enhance mass transfer in both spanwise and streamwise directions. The characteristics and distribution of the microstructures on the proposed biomimetic surface are potentially to be used to guide the design of the surface in high efficiency heat exchangers and reactors.
基金the National Natural Science Foundation of China (21290191)
文摘We introduce here a work package for a National Natural Science Foundation of China Major Project. We propose to develop computational methodology starting from the theory of electronic excitation processes to predicting the opto-electronic property for organic materials, in close collaborations with experiments. Through developing methods for the electron dynamics, considering superexchange electronic couplings, spin-orbit coupling elements between excited states, electron-phonon relaxation, intermolecular Coulomb and exchange terms we combine the statistical physics approaches including dynamic Monte Carlo, Boltzmann transport equation and Boltzmann statistics to predict the macroscopic properties of opto-electronic materials such as light-emitting efficiency, charge mobility, and exciton diffusion length. Experimental synthesis and characterization of D-A type ambipolar transport material as well as novel carbon based material will provide a test ground for the verification of theory.
基金financially supported by the National Key Scientific Research Instrument Development Project(81927804)the Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY011112)+1 种基金the Clinical Research Project of Shandong University(2020SDUCRCB004)the National Nature Science Foundation of China(81960419 and 81760416)。
文摘Epilepsy is a chronic nervous disease with increasing incidence worldwide,while the accurate localization of epileptic focus and the corresponding treatment are still challenging due to the lack of effective tools to monitor and modulate the related brain neurological activities.In this work,stretchable micro electrocorticogram(mECoG)electrodes are developed and used to investigate penicillininduced epilepsy in rats.The electrodes possess excellent stretchability,conformality,anti-interference ability and sufficient resolution to successfully monitor electroencephalogram(EEG)signals,which is superior to traditional rigid polyimide-based electrodes.Characteristic epileptic spike waves are detected and analyzed to study the epileptic focus and electrical stimulus effects during epileptic seizures.It is found that the spike waves occur first in the visual cortex which is likely to be the epileptic focus.Epileptic spike wave frequency quickly increases to 1.07 Hz where it reaches a plateau and remains stable.There is no dominant brain hemisphere that would show early warning of epileptic seizures.Electrical stimuli for various times are applied after administering penicillin.It is found that 15 min of electrical stimulus has the best restraining effect on epileptic seizures.The mECoG electrodes developed in this study show potentials for applications in stretchable biomedical devices.