In this paper, we propose a novelmethod based on the plate theory to simultaneously predict retention times and peak shapes under gradient elutions and different flow rates by reversed-phase high-performance liquid ch...In this paper, we propose a novelmethod based on the plate theory to simultaneously predict retention times and peak shapes under gradient elutions and different flow rates by reversed-phase high-performance liquid chromatography. The proposed method yielded excellent retention prediction results in experiments with 16 common sulfonamides under 18 gradient conditions and four different flow rates, including 0.7, 1.0, 1.3, and 1.5 mL/min. The mean absolute deviation was 0.70%, which indicates accurate prediction. Moreover, the proposed method predicts the change wellin peak shapes caused by the expansion or compression ofpeaks under different gradient conditions.展开更多
Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. p H value or alkali concentration is usually adjusted in order to...Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. p H value or alkali concentration is usually adjusted in order to determine a proper dosage of alkali. Our work has found that this is not a good strategy. A new parameter, the ratio of alkali to sludge(Ra/s), is more sensitive in controlling the alkali dosage. The sludge concentration Csand retention time t are two other important factors to consider. The validity of these arguments is confirmed with modeling and experiments. The individual effect of Ra/s, Csand t was studied separately. Then the combined effect of these three factors was evaluated. The sludge disintegration degree of 44.7% was achieved with the optimized factors. Furthermore, an alkaline-microwave combined pretreatment process was carried out under these optimized conditions. A high disintegration degree of 62.3% was achieved while the energy consumption of microwave was much lower than previously reported.展开更多
基金supported by the National Nature Science Foundation of China (No. 51406109)
文摘In this paper, we propose a novelmethod based on the plate theory to simultaneously predict retention times and peak shapes under gradient elutions and different flow rates by reversed-phase high-performance liquid chromatography. The proposed method yielded excellent retention prediction results in experiments with 16 common sulfonamides under 18 gradient conditions and four different flow rates, including 0.7, 1.0, 1.3, and 1.5 mL/min. The mean absolute deviation was 0.70%, which indicates accurate prediction. Moreover, the proposed method predicts the change wellin peak shapes caused by the expansion or compression ofpeaks under different gradient conditions.
基金the National Natural Science Foundation of China(51078234)Shenzhen R&D fund(JCYJ20140418193546101)Shenzhen University R&D fund(T201203)
文摘Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. p H value or alkali concentration is usually adjusted in order to determine a proper dosage of alkali. Our work has found that this is not a good strategy. A new parameter, the ratio of alkali to sludge(Ra/s), is more sensitive in controlling the alkali dosage. The sludge concentration Csand retention time t are two other important factors to consider. The validity of these arguments is confirmed with modeling and experiments. The individual effect of Ra/s, Csand t was studied separately. Then the combined effect of these three factors was evaluated. The sludge disintegration degree of 44.7% was achieved with the optimized factors. Furthermore, an alkaline-microwave combined pretreatment process was carried out under these optimized conditions. A high disintegration degree of 62.3% was achieved while the energy consumption of microwave was much lower than previously reported.