Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf...Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.展开更多
As the critical equipment,large axial-flow fan(LAF)is used widely in highway tunnels for ventilating.Note that any malfunction of LAF can cause severe consequences for traffic.Specifically,fault deterioration is suppr...As the critical equipment,large axial-flow fan(LAF)is used widely in highway tunnels for ventilating.Note that any malfunction of LAF can cause severe consequences for traffic.Specifically,fault deterioration is suppressed tremendously when an abnormal state is detected in the stage of early fault.Thus,the monitoring of the early fault characteristics is very difficult because of the low signal amplitude and system disturbance(or noise).In order to overcome this problem,a novel early fault judgment method to predict the operation trend is proposed in this paper.The vibration-electric information fusion,the support vector machine(SVM)with particle swarm optimization(PSO),and the cross-validation(CV)for predicting LAF operation states are proposed and discussed.Finally,the results of the experimental study verify that the performance of the proposed method is superior to that of the contrast models.展开更多
We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approx...We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approximate solutions, which strongly converge to the exact solution of a fuzzy set-valued variational inclusion with (H,η)-monotone. The results improved and generalized the general quasi-variational inclusions with fuzzy set-valued mappings proposed by Jin and Tian Jin MM, Perturbed proximal point algorithm for general quasi-variational inclusions with fuzzy set-valued mappings, OR Transactions, 2005, 9(3): 31-38, (In Chinese); Tian YX, Generalized nonlinear implicit quasi-variational inclusions with fuzzy mappings, Computers & Mathematics with Applications, 2001, 42: 101-108.展开更多
We formulate the subcarrier and power allocation problem in cognitive radio networks employing orthogonal frequency division multiplexing (OFDM) as a non-linear optimization problem with the objective of maximizing ...We formulate the subcarrier and power allocation problem in cognitive radio networks employing orthogonal frequency division multiplexing (OFDM) as a non-linear optimization problem with the objective of maximizing sum capacity under constraints of available subcarriers, interference temperature, power budget, etc. A close-to-optimal solution with much reduced complexity is proposed to separate the problem into two steps, which also considers fairness among secondary users. A fair al- gorithm for subcarrier allocation (FA_SA) is firstly presented. Secondly, a fast iterative water-filling algorithm for power allocation (FIWFA_PA) is also proposed to maximize the sum capacity. Exten- sive simulation results show that sum capacity performance of our low-complexity solution is very close to the optimal one, while significantly improving fairness and reducing computation complexity compared with the existing solutions.展开更多
In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kerne...In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kernel function and model parameterswere optimized using particle swarm optimization.It is shown that the forecast result isvery close to the real monitoring data.Furthermore, the PSO-SVM (Particle Swarm Optimization-Support Vector Machine) model is compared with the GM(1,1) model and L-M BPnetwork model.The results show that PSO-SVM method is better in the aspect of predictionaccuracy and the PSO-SVM roadway deformation pre-diction model is feasible for thelarge deformation prediction of coal mine roadway.展开更多
Objective Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the causative agent for coronavirus disease 2019(COVID-19),is responsible for the recent global pandemic.As there are no effective drugs or vaccine...Objective Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the causative agent for coronavirus disease 2019(COVID-19),is responsible for the recent global pandemic.As there are no effective drugs or vaccines available for SARS-CoV-2,we investigated the potential of flavonoids against SARS-CoV-2 main protease 6YNQ.Methods In silico molecular simulation study against SARS-CoV-2 main protease 6YNQ.Results Among the 21 selected flavonoids,rutin demonstrated the highest binding energy(−8.7 kcal/mol)and displayed perfect binding with the catalytic sites.Conclusions Our study demonstrates the inhibitory potential of flavonoids against SARS-CoV-2 main protease 6YNQ.These computational simulation studies support the hypothesis that flavonoids might be helpful for the treatment of COVID-19.展开更多
This paper deals with a new class of nonlinear set valued implicit variational inclusion problems involving (A, η)-monotone mappings in 2-uniformly smooth Banach spaces. Semi-inner product structure has been used t...This paper deals with a new class of nonlinear set valued implicit variational inclusion problems involving (A, η)-monotone mappings in 2-uniformly smooth Banach spaces. Semi-inner product structure has been used to study the (A, η)-monotonicity. Using the generalized resolvent operator technique and the semi-inner product structure, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also investigated for variational inclusion problems involving (H, η)-monotone mappings.展开更多
The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the &...The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the "lone"ethod is applied to deal with the infeasible structures, and the "oint mutation and reconstruction"ethod is applied in local search phase. The empirical results show that the presented method is feasible and effective to solve the problem of protein structure prediction, and notable improvements in CPU time are obtained.展开更多
The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from...The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from the geographically separated photovoltaic plants through network. In this paper, a forecasting model is designed with an optimization algorithm which is developed with the combination of PSO (Particle Swarm Optimization) and BP (Back Propagation) neural network. The proposed model is further validated and the experiment results show that the predication model assures the prediction accuracy regardless the day type transitions and other relevant factors, in the proposed model, the prediction error rate is worth less than 20% in all different climatic conditions and most of the prediction error accuracy is less than 10% in sunny day, and whose precision satisfies the management requirements of the power grid companies, reflecting the significance of the proposed model in engineering applications.展开更多
Theoretical study on the supramolecular complexes formed between boron-doped het- erofullerene (C59B) and zinc porphine (ZnF), namely C59B-ZnP and its anion species C59B-ZnP, was performed by density functional th...Theoretical study on the supramolecular complexes formed between boron-doped het- erofullerene (C59B) and zinc porphine (ZnF), namely C59B-ZnP and its anion species C59B-ZnP, was performed by density functional theory calculation at wB97XD/6-31G(d) level. Strong interaction between porphyrin and heterofullerene moiety was predicted for these complexes based on geometry and electronic structure analysis. Especially, pseudobonding interaction occurring between the B atom of fullerene and the N atom of porphyrin was predicted to occur in C59B-ZnP complex, but be broken in C59B-ZnP complex. Time-dependent density functional theory calculation manifests the redshift of electron absorption for ZnP upon the interaction with heterofullerene.展开更多
We give an overview of the question: which positive elements in an operator algebra can be written as a linear combination of projections with positive coefficients. A special case of independent interest is the ques...We give an overview of the question: which positive elements in an operator algebra can be written as a linear combination of projections with positive coefficients. A special case of independent interest is the question of which positive elements can be written as a sum of finitely many projections. We focus on von Neumann Mgebras, on purely infinite simple C^*-algebras, and on their associated multiplier algebras.展开更多
Atmospheric oxygen (02) is the most crucial element on earth for the aerobic organisms that depend on it to release energy from carbon-based macromolecules. This is the first study to systematically analyze the glob...Atmospheric oxygen (02) is the most crucial element on earth for the aerobic organisms that depend on it to release energy from carbon-based macromolecules. This is the first study to systematically analyze the global O2 budget and its changes over the past 100 years. It is found that anthropogenic fossil fuel combustion is the largest contributor to the current O2 deficit, which consumed 2.0 Gt/a in 1900 and has increased to 38.2 Gt/a by 2015. Under the Representative Concentration Pathways (RCPs) RCP8,5 scenario, approximately 100Gt (gigatonnes) of O2 would be removed from the atmosphere per year until 2100, and the O2 concentration will decrease from its current level of 20.946% to 20.825%. Human activities have caused irreversible decline of atmospheric O2. It is time to take actions to promote O2 production and reduce O2 consumption.展开更多
Abstract Accurate forecast of future container throughput of a port is very important for its con struction, upgrading, and operation management. This study proposes a transfer forecasting model guided by discrete par...Abstract Accurate forecast of future container throughput of a port is very important for its con struction, upgrading, and operation management. This study proposes a transfer forecasting model guided by discrete particle swarm optimization algorithm (TF-DPSO). It firstly transfers some related time series in source domain to assist in modeling the target time series by transfer learning technique, and then constructs the forecasting model by a pattern matching method called analog complexing. Finally, the discrete particle swarm optimization algorithm is introduced to find the optimal match between the two important parameters in TF-DPSO. The container throughput time series of two im portant ports in China, Shanghai Port and Ningbo Port are used for empirical analysis, and the results show the effectiveness of the proposed model.展开更多
In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficie...In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.展开更多
基金The National Natural Science Foundation of China(No.71101014,50679008)Specialized Research Fund for the Doctoral Program of Higher Education(No.200801411105)the Science and Technology Project of the Department of Communications of Henan Province(No.2010D107-4)
文摘Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.
基金Project(2018YFB2002100)supported by the National Key R&D Program of China。
文摘As the critical equipment,large axial-flow fan(LAF)is used widely in highway tunnels for ventilating.Note that any malfunction of LAF can cause severe consequences for traffic.Specifically,fault deterioration is suppressed tremendously when an abnormal state is detected in the stage of early fault.Thus,the monitoring of the early fault characteristics is very difficult because of the low signal amplitude and system disturbance(or noise).In order to overcome this problem,a novel early fault judgment method to predict the operation trend is proposed in this paper.The vibration-electric information fusion,the support vector machine(SVM)with particle swarm optimization(PSO),and the cross-validation(CV)for predicting LAF operation states are proposed and discussed.Finally,the results of the experimental study verify that the performance of the proposed method is superior to that of the contrast models.
基金the Natural Science Foundation of China (No. 10471151)the Educational Science Foundation of Chongqing (KJ051307).
文摘We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approximate solutions, which strongly converge to the exact solution of a fuzzy set-valued variational inclusion with (H,η)-monotone. The results improved and generalized the general quasi-variational inclusions with fuzzy set-valued mappings proposed by Jin and Tian Jin MM, Perturbed proximal point algorithm for general quasi-variational inclusions with fuzzy set-valued mappings, OR Transactions, 2005, 9(3): 31-38, (In Chinese); Tian YX, Generalized nonlinear implicit quasi-variational inclusions with fuzzy mappings, Computers & Mathematics with Applications, 2001, 42: 101-108.
基金Supported by the National High Technology Research and Development Programme of China( No. 2007AA01Z221, No. 2009AA01Z246) , and the National Natural Science Foundation of China( No. 60672124, 60832009).
文摘We formulate the subcarrier and power allocation problem in cognitive radio networks employing orthogonal frequency division multiplexing (OFDM) as a non-linear optimization problem with the objective of maximizing sum capacity under constraints of available subcarriers, interference temperature, power budget, etc. A close-to-optimal solution with much reduced complexity is proposed to separate the problem into two steps, which also considers fairness among secondary users. A fair al- gorithm for subcarrier allocation (FA_SA) is firstly presented. Secondly, a fast iterative water-filling algorithm for power allocation (FIWFA_PA) is also proposed to maximize the sum capacity. Exten- sive simulation results show that sum capacity performance of our low-complexity solution is very close to the optimal one, while significantly improving fairness and reducing computation complexity compared with the existing solutions.
基金Supported by the National Natural Science Foundation of Zhejiang Province(2009C33049)the National Natural Science Foundation of China(50674040)
文摘In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kernel function and model parameterswere optimized using particle swarm optimization.It is shown that the forecast result isvery close to the real monitoring data.Furthermore, the PSO-SVM (Particle Swarm Optimization-Support Vector Machine) model is compared with the GM(1,1) model and L-M BPnetwork model.The results show that PSO-SVM method is better in the aspect of predictionaccuracy and the PSO-SVM roadway deformation pre-diction model is feasible for thelarge deformation prediction of coal mine roadway.
文摘Objective Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the causative agent for coronavirus disease 2019(COVID-19),is responsible for the recent global pandemic.As there are no effective drugs or vaccines available for SARS-CoV-2,we investigated the potential of flavonoids against SARS-CoV-2 main protease 6YNQ.Methods In silico molecular simulation study against SARS-CoV-2 main protease 6YNQ.Results Among the 21 selected flavonoids,rutin demonstrated the highest binding energy(−8.7 kcal/mol)and displayed perfect binding with the catalytic sites.Conclusions Our study demonstrates the inhibitory potential of flavonoids against SARS-CoV-2 main protease 6YNQ.These computational simulation studies support the hypothesis that flavonoids might be helpful for the treatment of COVID-19.
文摘This paper deals with a new class of nonlinear set valued implicit variational inclusion problems involving (A, η)-monotone mappings in 2-uniformly smooth Banach spaces. Semi-inner product structure has been used to study the (A, η)-monotonicity. Using the generalized resolvent operator technique and the semi-inner product structure, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also investigated for variational inclusion problems involving (H, η)-monotone mappings.
文摘The hydrophobic-polar (HP) lattice model is an important simplified model for studying protein folding. In this paper, we present an improved ACO algorithm for the protein structure prediction. In the algorithm, the "lone"ethod is applied to deal with the infeasible structures, and the "oint mutation and reconstruction"ethod is applied in local search phase. The empirical results show that the presented method is feasible and effective to solve the problem of protein structure prediction, and notable improvements in CPU time are obtained.
基金the National Natural Science Foundation of China under Grant No.61261016,Wuhan Science and technology project for the Solar energy intelligent management system development and application demonstration
文摘The degree of accuracy in predicting the photovoltaic power generation plays an important role in appropriate allocations and economic operations of the power plants based on the generating capacity data gathered from the geographically separated photovoltaic plants through network. In this paper, a forecasting model is designed with an optimization algorithm which is developed with the combination of PSO (Particle Swarm Optimization) and BP (Back Propagation) neural network. The proposed model is further validated and the experiment results show that the predication model assures the prediction accuracy regardless the day type transitions and other relevant factors, in the proposed model, the prediction error rate is worth less than 20% in all different climatic conditions and most of the prediction error accuracy is less than 10% in sunny day, and whose precision satisfies the management requirements of the power grid companies, reflecting the significance of the proposed model in engineering applications.
文摘Theoretical study on the supramolecular complexes formed between boron-doped het- erofullerene (C59B) and zinc porphine (ZnF), namely C59B-ZnP and its anion species C59B-ZnP, was performed by density functional theory calculation at wB97XD/6-31G(d) level. Strong interaction between porphyrin and heterofullerene moiety was predicted for these complexes based on geometry and electronic structure analysis. Especially, pseudobonding interaction occurring between the B atom of fullerene and the N atom of porphyrin was predicted to occur in C59B-ZnP complex, but be broken in C59B-ZnP complex. Time-dependent density functional theory calculation manifests the redshift of electron absorption for ZnP upon the interaction with heterofullerene.
文摘We give an overview of the question: which positive elements in an operator algebra can be written as a linear combination of projections with positive coefficients. A special case of independent interest is the question of which positive elements can be written as a sum of finitely many projections. We focus on von Neumann Mgebras, on purely infinite simple C^*-algebras, and on their associated multiplier algebras.
基金supported by the National Natural Science Foundation of China (41521004)the China University Research Talents Recruitment Program (111 project, B13045)
文摘Atmospheric oxygen (02) is the most crucial element on earth for the aerobic organisms that depend on it to release energy from carbon-based macromolecules. This is the first study to systematically analyze the global O2 budget and its changes over the past 100 years. It is found that anthropogenic fossil fuel combustion is the largest contributor to the current O2 deficit, which consumed 2.0 Gt/a in 1900 and has increased to 38.2 Gt/a by 2015. Under the Representative Concentration Pathways (RCPs) RCP8,5 scenario, approximately 100Gt (gigatonnes) of O2 would be removed from the atmosphere per year until 2100, and the O2 concentration will decrease from its current level of 20.946% to 20.825%. Human activities have caused irreversible decline of atmospheric O2. It is time to take actions to promote O2 production and reduce O2 consumption.
基金partly supported by the Natural Science Foundation of China under Grant Nos.71101100 and 70731160635New Teachers’Fund for Doctor Stations,Ministry of Education under Grant No.20110181120047+5 种基金Excellent Youth Fund of Sichuan University under Grant No.2013SCU04A08China Postdoctoral Science Foundation under Grant Nos.2011M500418,2012T50148 and 2013M530753Frontier and Cross-innovation Foundation of Sichuan University under Grant No.skqy201352Soft Science Foundation of Sichuan Province under Grant No.2013ZR0016Humanities and Social Sciences Youth Foundation of the Ministry of Education of China under Grant No.11YJC870028Selfdetermined Research Funds of CCNU from the Colleges’ Basic Research and Operation of MOE under Grant No.CCNU13F030
文摘Abstract Accurate forecast of future container throughput of a port is very important for its con struction, upgrading, and operation management. This study proposes a transfer forecasting model guided by discrete particle swarm optimization algorithm (TF-DPSO). It firstly transfers some related time series in source domain to assist in modeling the target time series by transfer learning technique, and then constructs the forecasting model by a pattern matching method called analog complexing. Finally, the discrete particle swarm optimization algorithm is introduced to find the optimal match between the two important parameters in TF-DPSO. The container throughput time series of two im portant ports in China, Shanghai Port and Ningbo Port are used for empirical analysis, and the results show the effectiveness of the proposed model.
基金supported by National Natural Science Foundation of China(Grant No.10901093)National Science Foundation of Shandong Province(Grant No.ZR2013AM006)
文摘In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence.