期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
中文阅读中副中央凹预加工的范围与程度 被引量:14
1
作者 张慢慢 臧传丽 白学军 《心理科学进展》 CSSCI CSCD 北大核心 2020年第6期871-882,共12页
在阅读中,读者既能加工当前注视的中央凹视觉区的信息,也能从副中央凹视觉区提取信息并利用该信息预先加工下文词汇,称为预加工或预视。它是熟练阅读的一个关键环节。对副中央凹信息的预加工涉及预视的空间范围和预视程度(即预视量和预... 在阅读中,读者既能加工当前注视的中央凹视觉区的信息,也能从副中央凹视觉区提取信息并利用该信息预先加工下文词汇,称为预加工或预视。它是熟练阅读的一个关键环节。对副中央凹信息的预加工涉及预视的空间范围和预视程度(即预视量和预视类型)。在拼音文字阅读的研究中,关于预视范围与预视程度如何受中央凹加工负荷和副中央凹预加工负荷的调节存在争议,一个主要的原因是拼音文字词长变异大,在考察预视程度时难以克服预视范围的干扰。而中文词长变化小,能有效分离预视范围与预视程度。利用中文优势,采用眼动技术来考察:(1)副中央凹预加工负荷如何影响预视范围,(2)中央凹加工负荷如何影响预视范围与预视程度,(3)阅读能力与阅读效率如何调节预视范围与预视程度,结果将有助于解决副中央凹预视研究中的理论争论,为预测阅读能力与衡量阅读效率提供更多有效的眼动行为指标。 展开更多
关键词 中文阅读 预视范围 预视程度 眼动
下载PDF
Vision-based behavior prediction of ball carrier in basketball matches 被引量:2
2
作者 夏利民 王千 吴联世 《Journal of Central South University》 SCIE EI CAS 2012年第8期2142-2151,共10页
A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifyi... A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifying its yaw angle to determine his vision range and the court situation of the sportsman within his vision range can be further learned. In basketball match videos characterized by cluttered background, fast motion of the sportsmen and low resolution of their head images, and the covariance descriptor, were adopted to fuse multiple visual features of the head region, which can be seen as a point on the Riemannian manifold and then mapped to the tangent space. Then, the classification of head yaw angle was directly completed in this space through the trained multiclass LogitBoost. In order to describe the court situation of all sportsmen within the ball carrier’s vision range, artificial potential field (APF)-based information was introduced. Finally, the behavior of the ball carrier—shooting, passing and dribbling, was predicted using radial basis function (RBF) neural network as the classifier. Experimental results show that the average prediction accuracy of the proposed method can reach 80% on the video recorded in basketball matches, which validates its effectiveness. 展开更多
关键词 covariance descriptor tangent space LogitBoost artificial potential field radial basis function neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部