To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-...To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-SVM) multi-classifier and regression machine. For the forecasting model, the methane concentration can be considered as a nonlinear time series and the time series analysis method is adopted to predict the change in methane concentration using LS-SVM regression. For the forewarning model, which is based on the forecasting results, by the multi-classification method of LS-SVM, the methane hazard was identified to four grades: normal, attention, warning and danger. According to the forewarning results, corresponding measures are taken. The model was used to forecast and forewarn the K9 working face. The results obtained by LS-SVM regression show that the forecast- ing have a high precision and forewarning results based on a LS-SVM multi-classifier are credible. Therefore, it is an effective model building method for continuous prediction of methane concentration and hazard forewarning in working face.展开更多
Alarm systems play important roles for the safe and efficient operation of modern industrial plants. Critical alarms are configured with a higher priority and are safety related among many other alarms. If critical al...Alarm systems play important roles for the safe and efficient operation of modern industrial plants. Critical alarms are configured with a higher priority and are safety related among many other alarms. If critical alarms can be predicted in advance, the operator will have more time to prevent them from happening. In this paper,we present a dynamic alarm prediction algorithm, which is a probabilistic model that utilizes alarm data from distributed control system, to calculate the occurrence probability of critical alarms. It accounts for the local interdependences among the alarms using the n-gram model, which occur because of the nonlinear relationships between variables. Finally, the dynamic alarm prediction algorithm is applied to an industrial case study.展开更多
基金Project 50674111 supported by the National Natural Science Foundation of China
文摘To improve the precision and reliability in predicting methane hazard in working face of coal mine, we have proposed a forecasting and forewarning model for methane hazard based on the least square support vector (LS-SVM) multi-classifier and regression machine. For the forecasting model, the methane concentration can be considered as a nonlinear time series and the time series analysis method is adopted to predict the change in methane concentration using LS-SVM regression. For the forewarning model, which is based on the forecasting results, by the multi-classification method of LS-SVM, the methane hazard was identified to four grades: normal, attention, warning and danger. According to the forewarning results, corresponding measures are taken. The model was used to forecast and forewarn the K9 working face. The results obtained by LS-SVM regression show that the forecast- ing have a high precision and forewarning results based on a LS-SVM multi-classifier are credible. Therefore, it is an effective model building method for continuous prediction of methane concentration and hazard forewarning in working face.
基金Supported by the National High Technology Research and Development Program of China(2013AA040701)
文摘Alarm systems play important roles for the safe and efficient operation of modern industrial plants. Critical alarms are configured with a higher priority and are safety related among many other alarms. If critical alarms can be predicted in advance, the operator will have more time to prevent them from happening. In this paper,we present a dynamic alarm prediction algorithm, which is a probabilistic model that utilizes alarm data from distributed control system, to calculate the occurrence probability of critical alarms. It accounts for the local interdependences among the alarms using the n-gram model, which occur because of the nonlinear relationships between variables. Finally, the dynamic alarm prediction algorithm is applied to an industrial case study.