The application of bio-inspired computational techniques to the field of condition monitoring is addressed. First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of t...The application of bio-inspired computational techniques to the field of condition monitoring is addressed. First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of these computational methods are made clear. Then, the roles of condition monitoring in the predictive maintenance and failures prediction and the development trends of condition monitoring are discussed. Finally, a case study on the condition monitoring of grinding machine is described, which shows the application of bio-inspired computational technique to a practical condition monitoring system.展开更多
A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a n...A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators.展开更多
The present situation of lacking fast and effective coal and gas outburst prediction techniques will lead to long out- burst prevention cycles and poor accurate prediction effects and slows down coal roadway drive spe...The present situation of lacking fast and effective coal and gas outburst prediction techniques will lead to long out- burst prevention cycles and poor accurate prediction effects and slows down coal roadway drive speed seriously. Also, due to historical and economic reasons, some coal mines in China are equipped with poor safety equipment, and the staff professional capability is low. What's worse, artificial and mine geological conditions have great influences on the traditional technologies of coal and gas outburst prediction. Therefore, seeking a new fast and efficient coal and gas outburst prediction method is nec- essary. By using system engineering theory, combined with the current mine production conditions and based on the coal and gas outburst composite hypothesis, a coal and gas outburst spatiotemporal forecasting system was established. This system can guide forecasting work schedule, optimize prediction technologies, carry out step-by-step prediction and eliminate hazard hier- archically. From the point of view of application, the proposed system improves the prediction efficiency and accuracy. On this basis, computational intelligence methods to construct disaster information analysis platform were used. Feed-back results pro- vide decision support to mine safety supervisors.展开更多
The correct use of information in science and technology is very important for its progress. Nowadays, the equipment used for the scientific and technological development provides results that are later interpreted by...The correct use of information in science and technology is very important for its progress. Nowadays, the equipment used for the scientific and technological development provides results that are later interpreted by the researchers, in most of the above mentioned equipment the results are images full of information which has to be analyzed. A powerful stage with multiple benefits in this field is the image pre-processing by means of intelligent systems, which are capable to do image analysis throwing very useful results that enhance the scientific and technological information. There are currently more than 500 functions in the computational vision specialized open source library OpenCV, which associated with the C++ programming language. These functions are used for application development in many areas of computer vision such as products inspection, medical images, safety, user's interfaces, camera calibration, stereoscopic vision and robotics. In this development and research work, by using the available functions and modifying the exposed methods, we present a proposal for signal detection in images originated in the transmission electron microscope (known as diffraction patterns), which are attached to the detailed analysis of crystalline structures used in the study of the materials science, the results show a profit of at least 18% in the detection of signs by means of the method proposed in this work.展开更多
Spectrum sensing is one of the key issues in cognitive radio networks. Most of previous work concenates on sensing the spectrum in a single spectrum band. In this paper, we propose a spectrum sensing sequence predicti...Spectrum sensing is one of the key issues in cognitive radio networks. Most of previous work concenates on sensing the spectrum in a single spectrum band. In this paper, we propose a spectrum sensing sequence prediction scheme for cognitive radio networks with multiple spectrum bands to decrease the spectrum sensing time and increase the throughput of secondary users. The scheme is based on recent advances in computational learning theory, which has shown that prediction is synonymous with data compression. A Ziv-Lempel data compression algorithm is used to design our spectrum sensing sequence prediction scheme. The spectrum band usage history is used for the prediction in our proposed scheme. Simulation results show that the proposed scheme can reduce the average sensing time and improve the system throughput significantly.展开更多
基金supported by the National Natural Science Foundation of China ( No. 61025019No. 90820016)+1 种基金Program for New Century Excellent Talents in University ( No. NECT-07-0735)Natural Science Foundation of Hebei ( No. F2009001638)
文摘The application of bio-inspired computational techniques to the field of condition monitoring is addressed. First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of these computational methods are made clear. Then, the roles of condition monitoring in the predictive maintenance and failures prediction and the development trends of condition monitoring are discussed. Finally, a case study on the condition monitoring of grinding machine is described, which shows the application of bio-inspired computational technique to a practical condition monitoring system.
基金Project(9140A18010210KG01) supported by the Departmental Pre-Research Fund of China
文摘A novel configuration performance prediction approach with combination of principal component analysis(PCA) and support vector machine(SVM) was proposed.This method can estimate the performance parameter values of a newly configured product through soft computing technique instead of practical test experiments,which helps to evaluate whether or not the product variant can satisfy the customers' individual requirements.The PCA technique was used to reduce and orthogonalize the module parameters that affect the product performance.Then,these extracted features were used as new input variables in SVM model to mine knowledge from the limited existing product data.The performance values of a newly configured product can be predicted by means of the trained SVM models.This PCA-SVM method can ensure that the performance prediction is executed rapidly and accurately,even under the small sample conditions.The applicability of the proposed method was verified on a family of plate electrostatic precipitators.
文摘The present situation of lacking fast and effective coal and gas outburst prediction techniques will lead to long out- burst prevention cycles and poor accurate prediction effects and slows down coal roadway drive speed seriously. Also, due to historical and economic reasons, some coal mines in China are equipped with poor safety equipment, and the staff professional capability is low. What's worse, artificial and mine geological conditions have great influences on the traditional technologies of coal and gas outburst prediction. Therefore, seeking a new fast and efficient coal and gas outburst prediction method is nec- essary. By using system engineering theory, combined with the current mine production conditions and based on the coal and gas outburst composite hypothesis, a coal and gas outburst spatiotemporal forecasting system was established. This system can guide forecasting work schedule, optimize prediction technologies, carry out step-by-step prediction and eliminate hazard hier- archically. From the point of view of application, the proposed system improves the prediction efficiency and accuracy. On this basis, computational intelligence methods to construct disaster information analysis platform were used. Feed-back results pro- vide decision support to mine safety supervisors.
文摘The correct use of information in science and technology is very important for its progress. Nowadays, the equipment used for the scientific and technological development provides results that are later interpreted by the researchers, in most of the above mentioned equipment the results are images full of information which has to be analyzed. A powerful stage with multiple benefits in this field is the image pre-processing by means of intelligent systems, which are capable to do image analysis throwing very useful results that enhance the scientific and technological information. There are currently more than 500 functions in the computational vision specialized open source library OpenCV, which associated with the C++ programming language. These functions are used for application development in many areas of computer vision such as products inspection, medical images, safety, user's interfaces, camera calibration, stereoscopic vision and robotics. In this development and research work, by using the available functions and modifying the exposed methods, we present a proposal for signal detection in images originated in the transmission electron microscope (known as diffraction patterns), which are attached to the detailed analysis of crystalline structures used in the study of the materials science, the results show a profit of at least 18% in the detection of signs by means of the method proposed in this work.
基金Supported by the National Natural Science Foundation of China(No.60832009), the Natural Science Foundation of Beijing (No.4102044) and the National Nature Science Foundation for Young Scholars of China (No.61001115)
文摘Spectrum sensing is one of the key issues in cognitive radio networks. Most of previous work concenates on sensing the spectrum in a single spectrum band. In this paper, we propose a spectrum sensing sequence prediction scheme for cognitive radio networks with multiple spectrum bands to decrease the spectrum sensing time and increase the throughput of secondary users. The scheme is based on recent advances in computational learning theory, which has shown that prediction is synonymous with data compression. A Ziv-Lempel data compression algorithm is used to design our spectrum sensing sequence prediction scheme. The spectrum band usage history is used for the prediction in our proposed scheme. Simulation results show that the proposed scheme can reduce the average sensing time and improve the system throughput significantly.