期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于BERT—BiLSTM—CRF模型的中文岩石描述文本命名实体与关系联合提取
被引量:
6
1
作者
陈忠良
袁峰
+1 位作者
李晓晖
张明明
《地质论评》
CAS
CSCD
北大核心
2022年第2期742-750,共9页
地质调查正在从“数字化”走向“智能化”,需要在大数据思维的指导下,面向非结构化数据开展机器阅读和地质知识的自动提取。地学命名实体和关系联合提取是当前研究的难点和核心。本文采用基于大规模预训练中文语言模型的BERT—BiLSTM—...
地质调查正在从“数字化”走向“智能化”,需要在大数据思维的指导下,面向非结构化数据开展机器阅读和地质知识的自动提取。地学命名实体和关系联合提取是当前研究的难点和核心。本文采用基于大规模预训练中文语言模型的BERT—BiLSTM—CRF方法开展岩石描述文本命名实体与关系联合提取。首先,通过收集数字地质填图工作中的剖面测量和路线地质观测数据,建立岩石描述语料;然后,在岩石学理论指导下分析岩石知识组成,完成岩石知识图谱命名实体与关系的模式设计,标注岩石语料;最后,开展岩石描述语料知识提取的深度学习训练和消融试验对比。试验结果显示,大规模预训练中文语言模型(BERT)对岩石描述语料知识提取具有较高的适用性。推荐的BERT—BiLSTM—CRF模型方法对岩石命名实体与关系联合提取的准确率(F1值)为91.75%,对岩石命名实体识别的准确率(F1值)为97.38%。消融试验证明基于BERT的词嵌入层对岩石描述知识提取的性能提升影响显著,双向长短时记忆网络模型层(BiLSTM Layer)能提升实体关系联合提取性能。
展开更多
关键词
大数据思维
深度学习
预训练中文语言模型
命名实体识别
关系提取
下载PDF
职称材料
基于检索器-鉴别器架构的电力地址匹配模型研究
2
作者
赵坚鹏
盛方
+3 位作者
徐川子
陈奕
罗庆
陈聪
《电力大数据》
2023年第1期35-43,共9页
为解决电力地址库与外部地址库地址的匹配问题,保证电力地址准确性,实现电力系统与外部系统间数据信息共享互通,本文提出一种基于检索器-鉴别器架构的地址匹配模型。首先介绍地址匹配模型的详细结构,包括用于缩小地址检索范围的地址检...
为解决电力地址库与外部地址库地址的匹配问题,保证电力地址准确性,实现电力系统与外部系统间数据信息共享互通,本文提出一种基于检索器-鉴别器架构的地址匹配模型。首先介绍地址匹配模型的详细结构,包括用于缩小地址检索范围的地址检索器和最终分辨地址是否匹配正确的地址鉴别器,其中地址检索器基于词频-逆文档频率算法构建,地址鉴别器基于中文预训练语言模型NEZHA构建。还提出了一种负样本训练方法提升地址鉴别器辨别效果。详细介绍了实验分析所使用的两个数据集。实验结果表明基于检索器-鉴别器架构的电力地址匹配模型能够准确从外部地址库中找出与电力地址匹配的地址,其中,地址鉴别器能够非常准确地从多个候选地址中找出准确匹配地址,其F1分数达0.99以上。
展开更多
关键词
地址匹配
电力地址
词频-逆文档频率
中文
预
训练
语言
模型
负样本
下载PDF
职称材料
题名
基于BERT—BiLSTM—CRF模型的中文岩石描述文本命名实体与关系联合提取
被引量:
6
1
作者
陈忠良
袁峰
李晓晖
张明明
机构
合肥工业大学资源与环境工程学院
安徽省地质调查院
出处
《地质论评》
CAS
CSCD
北大核心
2022年第2期742-750,共9页
基金
国家自然科学基金资助项目(编号:41820104007,42072321,41872247)的成果。
文摘
地质调查正在从“数字化”走向“智能化”,需要在大数据思维的指导下,面向非结构化数据开展机器阅读和地质知识的自动提取。地学命名实体和关系联合提取是当前研究的难点和核心。本文采用基于大规模预训练中文语言模型的BERT—BiLSTM—CRF方法开展岩石描述文本命名实体与关系联合提取。首先,通过收集数字地质填图工作中的剖面测量和路线地质观测数据,建立岩石描述语料;然后,在岩石学理论指导下分析岩石知识组成,完成岩石知识图谱命名实体与关系的模式设计,标注岩石语料;最后,开展岩石描述语料知识提取的深度学习训练和消融试验对比。试验结果显示,大规模预训练中文语言模型(BERT)对岩石描述语料知识提取具有较高的适用性。推荐的BERT—BiLSTM—CRF模型方法对岩石命名实体与关系联合提取的准确率(F1值)为91.75%,对岩石命名实体识别的准确率(F1值)为97.38%。消融试验证明基于BERT的词嵌入层对岩石描述知识提取的性能提升影响显著,双向长短时记忆网络模型层(BiLSTM Layer)能提升实体关系联合提取性能。
关键词
大数据思维
深度学习
预训练中文语言模型
命名实体识别
关系提取
Keywords
big data thinking
deep learning
pretrained Chinese language model
named entity recognition
relation extraction
分类号
P628 [天文地球—地质矿产勘探]
下载PDF
职称材料
题名
基于检索器-鉴别器架构的电力地址匹配模型研究
2
作者
赵坚鹏
盛方
徐川子
陈奕
罗庆
陈聪
机构
国网杭州供电公司
出处
《电力大数据》
2023年第1期35-43,共9页
文摘
为解决电力地址库与外部地址库地址的匹配问题,保证电力地址准确性,实现电力系统与外部系统间数据信息共享互通,本文提出一种基于检索器-鉴别器架构的地址匹配模型。首先介绍地址匹配模型的详细结构,包括用于缩小地址检索范围的地址检索器和最终分辨地址是否匹配正确的地址鉴别器,其中地址检索器基于词频-逆文档频率算法构建,地址鉴别器基于中文预训练语言模型NEZHA构建。还提出了一种负样本训练方法提升地址鉴别器辨别效果。详细介绍了实验分析所使用的两个数据集。实验结果表明基于检索器-鉴别器架构的电力地址匹配模型能够准确从外部地址库中找出与电力地址匹配的地址,其中,地址鉴别器能够非常准确地从多个候选地址中找出准确匹配地址,其F1分数达0.99以上。
关键词
地址匹配
电力地址
词频-逆文档频率
中文
预
训练
语言
模型
负样本
Keywords
address matching
power address
term frequency-inverse document frequency
Chinese pre-training language model
negative sample
分类号
TM933 [电气工程—电力电子与电力传动]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于BERT—BiLSTM—CRF模型的中文岩石描述文本命名实体与关系联合提取
陈忠良
袁峰
李晓晖
张明明
《地质论评》
CAS
CSCD
北大核心
2022
6
下载PDF
职称材料
2
基于检索器-鉴别器架构的电力地址匹配模型研究
赵坚鹏
盛方
徐川子
陈奕
罗庆
陈聪
《电力大数据》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部