期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
符号序列的预训练HMM分类方法
被引量:
2
1
作者
陈炳鑫
陈黎飞
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第1期52-58,共7页
隐马尔可夫模型(Hidden Markov Model,HMM)是一种双重随机概率模型,已广泛应用于序列数据建模.针对符号序列分类中距离度量定义的困难,提出一种符号序列的预训练HMM分类新方法.首先,定义一种基于HMM状态转移矩阵的序列距离新度量;其次,...
隐马尔可夫模型(Hidden Markov Model,HMM)是一种双重随机概率模型,已广泛应用于序列数据建模.针对符号序列分类中距离度量定义的困难,提出一种符号序列的预训练HMM分类新方法.首先,定义一种基于HMM状态转移矩阵的序列距离新度量;其次,为得到不同序列在HMM隐状态共享条件下的状态转移矩阵,提出一种两阶段的预训练方法,先在所有序列上进行HMM预训练以学习所有序列共享的隐状态,再使用共享状态为每条序列进行训练得到各自的状态转移矩阵;最后用近邻分类器对符号序列进行基于距离的分类.在三个应用领域的真实序列上进行了实验,并与基于子序列、HMM变体模型等现有分类方法进行对比,结果表明,所提出的方法能使用较低的特征维度取得较理想的分类精度.
展开更多
关键词
符号序列
序列距离度量
预训练hmm
特征表示
分类
下载PDF
职称材料
题名
符号序列的预训练HMM分类方法
被引量:
2
1
作者
陈炳鑫
陈黎飞
机构
福建师范大学数学与信息学院
数字福建环境监测物联网实验室
出处
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第1期52-58,共7页
基金
国家自然科学基金(U1805263,61672157)
福建师范大学创新团队资助项目(IRTL1704)。
文摘
隐马尔可夫模型(Hidden Markov Model,HMM)是一种双重随机概率模型,已广泛应用于序列数据建模.针对符号序列分类中距离度量定义的困难,提出一种符号序列的预训练HMM分类新方法.首先,定义一种基于HMM状态转移矩阵的序列距离新度量;其次,为得到不同序列在HMM隐状态共享条件下的状态转移矩阵,提出一种两阶段的预训练方法,先在所有序列上进行HMM预训练以学习所有序列共享的隐状态,再使用共享状态为每条序列进行训练得到各自的状态转移矩阵;最后用近邻分类器对符号序列进行基于距离的分类.在三个应用领域的真实序列上进行了实验,并与基于子序列、HMM变体模型等现有分类方法进行对比,结果表明,所提出的方法能使用较低的特征维度取得较理想的分类精度.
关键词
符号序列
序列距离度量
预训练hmm
特征表示
分类
Keywords
symbolic sequences
distance measurement of sequences
pre⁃training
hmm
feature representation
classification
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
符号序列的预训练HMM分类方法
陈炳鑫
陈黎飞
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部