现有直接信息采样(analog to information conversion,AIC)框架未考虑信号的轮廓在重构中占据特殊地位且对输入信号的有效性缺乏判断。针对这一问题,在压缩感知理论框架下,提出基于轮廓预提取的直接信息压缩采样理论。将输入信号的大轮...现有直接信息采样(analog to information conversion,AIC)框架未考虑信号的轮廓在重构中占据特殊地位且对输入信号的有效性缺乏判断。针对这一问题,在压缩感知理论框架下,提出基于轮廓预提取的直接信息压缩采样理论。将输入信号的大轮廓用低速采样器件先行提取出来,再对输入信号的细节进行压缩采样。在重构算法方面,提出自适应分段正交匹配追踪算法以解决实时流信号的精确重构问题。从理论上分析了轮廓预提取直接信息压缩采样的有效性和可靠性。仿真结果表明,在同等条件下,通过引入少量轮廓信息的改进型AIC比传统AIC重构性能更好。展开更多
文摘现有直接信息采样(analog to information conversion,AIC)框架未考虑信号的轮廓在重构中占据特殊地位且对输入信号的有效性缺乏判断。针对这一问题,在压缩感知理论框架下,提出基于轮廓预提取的直接信息压缩采样理论。将输入信号的大轮廓用低速采样器件先行提取出来,再对输入信号的细节进行压缩采样。在重构算法方面,提出自适应分段正交匹配追踪算法以解决实时流信号的精确重构问题。从理论上分析了轮廓预提取直接信息压缩采样的有效性和可靠性。仿真结果表明,在同等条件下,通过引入少量轮廓信息的改进型AIC比传统AIC重构性能更好。