This paper focuses on the seismic response of the curved and post-tensioned concrete box girder bridges. More specifically, it investigates how the curvature influences the response of a bridge subjected to earthquake...This paper focuses on the seismic response of the curved and post-tensioned concrete box girder bridges. More specifically, it investigates how the curvature influences the response of a bridge subjected to earthquake. Parametric analysis of different radius of curvature is performed and the internal forces, torsion moment, axial and shear along the bridge are calculated. Two types of connections are investigated, the monolithic connection and deck connection with bents and abutments with rubber bearing. The response spectrum seismic analysis was performed. The models were designed, according to the provisions of EC8-part 2, EC2 and the Greek regulations E39/99. Diagrams relating the curvature with the torsion moment have been obtained from the results of parametric analysis. These diagrams could be used by engineers for preliminary design of such kind of bridges.展开更多
Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, bu...Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.展开更多
Stress ribbon bridges have many advantages and became recently more popular mostly because of their versatile form, slender decks giving a light aesthetic impression and durability assured by post tensioned concrete. ...Stress ribbon bridges have many advantages and became recently more popular mostly because of their versatile form, slender decks giving a light aesthetic impression and durability assured by post tensioned concrete. The paper presents the first in Poland stress Ribbon Bridge constructed last year. A static and dynamic analyse of the model is presented as well as construction solutions which were used to achieve the highest durability. The bridge was checked during static and dynamic load test. The results of this prove test were compared with results obtained from examination and study of other different bridge structures. It confirmed that the bridge has good dynamic resistance and greater stiffness than assumed in the design.展开更多
The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study inv...The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.展开更多
文摘This paper focuses on the seismic response of the curved and post-tensioned concrete box girder bridges. More specifically, it investigates how the curvature influences the response of a bridge subjected to earthquake. Parametric analysis of different radius of curvature is performed and the internal forces, torsion moment, axial and shear along the bridge are calculated. Two types of connections are investigated, the monolithic connection and deck connection with bents and abutments with rubber bearing. The response spectrum seismic analysis was performed. The models were designed, according to the provisions of EC8-part 2, EC2 and the Greek regulations E39/99. Diagrams relating the curvature with the torsion moment have been obtained from the results of parametric analysis. These diagrams could be used by engineers for preliminary design of such kind of bridges.
基金Supported by the National Natural Science Foundation of China(No.51078059)
文摘Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively.
文摘Stress ribbon bridges have many advantages and became recently more popular mostly because of their versatile form, slender decks giving a light aesthetic impression and durability assured by post tensioned concrete. The paper presents the first in Poland stress Ribbon Bridge constructed last year. A static and dynamic analyse of the model is presented as well as construction solutions which were used to achieve the highest durability. The bridge was checked during static and dynamic load test. The results of this prove test were compared with results obtained from examination and study of other different bridge structures. It confirmed that the bridge has good dynamic resistance and greater stiffness than assumed in the design.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0701703)the Fundamental Research Funds for the Central Universities+1 种基金Project Supported by the Research and Innovation Program for Graduate Students in Jiangsu(Grant No.KYLX16_0257)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.CE02-2-47)
文摘The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.