期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于决策树CART的中文文语转换系统语音合成单元的预选 被引量:4
1
作者 秦欢 柴佩琪 《微型电脑应用》 2004年第5期5-7,共3页
近年来基于大语料库进行单元预选的语音合成技术逐渐受到人们的重视。由于其合成的语音单元取自自然的原始发音 ,合成语句的自然度和清晰度非常高。采用该技术的关键之一就是如何从语料库中选取合适的合成单元。本文采用了一种基于决策... 近年来基于大语料库进行单元预选的语音合成技术逐渐受到人们的重视。由于其合成的语音单元取自自然的原始发音 ,合成语句的自然度和清晰度非常高。采用该技术的关键之一就是如何从语料库中选取合适的合成单元。本文采用了一种基于决策树 CART (classification and regressiontree)的中文文语转换系统 (TTS)语音合成单元预选方法。实验表明 ,使用 CART时各个参与预选的文本属性在预选中所起的作用有所不同。最后以此来指导目标单元和候选单元之间规则距离的确定。 展开更多
关键词 决策树CART 语音合成技术 中文文语转换系统 合成单元 预选方法 TTS 规则距离 大语料库
下载PDF
Application and comparison of RNN, RBFNN and MNLR approaches on prediction of flotation column performance 被引量:8
2
作者 Nakhaei Fardis Irannajad Mehdi 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第6期983-990,共8页
Evaluation of grade and recovery plays an important role in process control and plant profitability in mineral processing operations, especially flotation. The accurate measurement or estimation of these two parameter... Evaluation of grade and recovery plays an important role in process control and plant profitability in mineral processing operations, especially flotation. The accurate measurement or estimation of these two parameters, based on the secondary variables, is a critical issue. Data-driven modeling techniques, which entail comprehensive data analysis and implementation of machine learning methods for system forecast, provide an attractive alternative. In this paper, two types of artificial neural networks(ANNs),namely radial basis function neural network(RBFNN) and layer recurrent neural network(RNN), and also a multivariate nonlinear regression(MNLR) model were employed to predict metallurgical performance of the flotation column. The training capacity and the accuracy of these three above mentioned types of models were compared. In order to acquire data for the simulation, a case study was conducted at Sarcheshmeh copper complex pilot plant. Based on the root mean squared error and correlation coefficient values, at training and testing stages, the RNN forecasted the metallurgical performance of the flotation column better than RBF and MNLR models. The RNN could predict Cu grade and recovery with correlation coefficients of 0.92 and 0.9, respectively in testing process. 展开更多
关键词 Flotation columnRadial basis functionRecurrent neural networkMultivariate nonlinear regressionMetallurgical performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部