Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation....Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.展开更多
With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce suppor...With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce support effect not obvious for ordinary bolt(cable). While bounding point and support structure of the truss cable is in vertex angle of roadway, and supplies coal-rock layers in bounding area with the horizontal and vertical pressure, so it settles the support problems in large cross section coal roadway. From the point of view of mechanics, gave emphasis on the invalid mechanics of ordinary bolt (cable) in large cross section coal roadway and supported mechanics of prestress truss cable. The author successfully used this technique in Wuyang Mine, and had the huge economic efficiency and the social benefit.展开更多
Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pr...Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.展开更多
Cable bolts are sometimes used in low-seam coal mines to provide support in difficult ground conditions.This paper describes cable bolting solutions at two low-seam coal mines in similar ground conditions.Both mines u...Cable bolts are sometimes used in low-seam coal mines to provide support in difficult ground conditions.This paper describes cable bolting solutions at two low-seam coal mines in similar ground conditions.Both mines used support systems incorporating cable bolts as part of the primary support system.Two original cable bolt based support systems as well as two modified systems are evaluated to estimate their ability to prevent large roof falls. One of the support systems incorporated passive cable bolts,while the other used pre-tensioned cable bolts. The results and experience at the mines showed that the modified systems provided improved stability over the original support systems. The presence of the cable bolts is the most important contribution to stability against large roof falls,rather than the details of the support pattern. It was also found that a heavy steel channel can improve the safety of the system because of the ‘sling' action it provides. Additionally,the analysis showed that fully-grouted rebar bolts load much earlier than the cable bolts,and pre-tensioning of the cable bolts can result in a more uniform distribution of loading in the roof.展开更多
The tensile and shear strength of intrinsic bolting support systems has always been a major concern of designers. A comprehensive laboratory testing program was designed to evaluate the tensile and shear strength of i...The tensile and shear strength of intrinsic bolting support systems has always been a major concern of designers. A comprehensive laboratory testing program was designed to evaluate the tensile and shear strength of individual wires and completely wound PC-strand cables. PC-strand cables with smooth wires and the recent anchorage enhancement innovation of indentation were evaluated and compared. The testing protocol detailed in ISO Standard 15630 utilizes a mandrel system that was investigated at 3different diameters which alters the wire to mandrel ratio from 2:1 to 9:1. The results demonstrate that the difference between smooth and indented wires is statistically insignificant when larger diameter mandrels are used,and that indentation does not adversely affect strand properties and performance.Insight into the shearing mechanism and evaluation techniques are discussed with the introduction of triaxial loading to describe the PC-strand tensile and shearing mechanisms. Another important result indicates that the shear strength of PC-strand cable bolting systems has a greater shear strength value than traditional steel bar bolting systems.展开更多
Aiming at prestressed anchor cable frame in the presence of reinforcement landslide problem, through the selection of test points, the paper study and tested soil pressure, frame internal force and prestress losses un...Aiming at prestressed anchor cable frame in the presence of reinforcement landslide problem, through the selection of test points, the paper study and tested soil pressure, frame internal force and prestress losses under prestressed anchor cable frame beam, reveal the law of internal force distribution, and provides a theory basis for the rational design of prestressed anchor cable in landslide.展开更多
基金the National Natural Science Foundation of China(No.50774077)the State Key Laboratory of Coal Resources and Safe Mining Autonomous Study Subject Foundation of China(No.SKLCRSM08X04)+2 种基金the National Basic Research Program of China,the National Excellence Doctor Degree Dissertation Special Foundation of China(No.200760)the New Century Talent Support Program of the Ministry of Education of China(No.NCET-06-0475)the Youth Scientific Research Foundation of China University of Mining & Technology(No. 2008A002)
文摘Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.
基金Supported by the National Natural Science Foundation of China (50074030) and Dr. Special fund of the Ministry of Education (20030290017)
文摘With the enlarge of cross section of roadway, the radius of plastic area and broken area increase, and the tensile stress and shear stress distributing in roof coal-rock layers relevantly increase, which induce support effect not obvious for ordinary bolt(cable). While bounding point and support structure of the truss cable is in vertex angle of roadway, and supplies coal-rock layers in bounding area with the horizontal and vertical pressure, so it settles the support problems in large cross section coal roadway. From the point of view of mechanics, gave emphasis on the invalid mechanics of ordinary bolt (cable) in large cross section coal roadway and supported mechanics of prestress truss cable. The author successfully used this technique in Wuyang Mine, and had the huge economic efficiency and the social benefit.
基金Financial supports are from the National Natural Science Foundation of China (No. 50874104)the Scientific Research Industrialization Project of Jiangsu Universities (No. JH07-023)
文摘Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.
文摘Cable bolts are sometimes used in low-seam coal mines to provide support in difficult ground conditions.This paper describes cable bolting solutions at two low-seam coal mines in similar ground conditions.Both mines used support systems incorporating cable bolts as part of the primary support system.Two original cable bolt based support systems as well as two modified systems are evaluated to estimate their ability to prevent large roof falls. One of the support systems incorporated passive cable bolts,while the other used pre-tensioned cable bolts. The results and experience at the mines showed that the modified systems provided improved stability over the original support systems. The presence of the cable bolts is the most important contribution to stability against large roof falls,rather than the details of the support pattern. It was also found that a heavy steel channel can improve the safety of the system because of the ‘sling' action it provides. Additionally,the analysis showed that fully-grouted rebar bolts load much earlier than the cable bolts,and pre-tensioning of the cable bolts can result in a more uniform distribution of loading in the roof.
文摘The tensile and shear strength of intrinsic bolting support systems has always been a major concern of designers. A comprehensive laboratory testing program was designed to evaluate the tensile and shear strength of individual wires and completely wound PC-strand cables. PC-strand cables with smooth wires and the recent anchorage enhancement innovation of indentation were evaluated and compared. The testing protocol detailed in ISO Standard 15630 utilizes a mandrel system that was investigated at 3different diameters which alters the wire to mandrel ratio from 2:1 to 9:1. The results demonstrate that the difference between smooth and indented wires is statistically insignificant when larger diameter mandrels are used,and that indentation does not adversely affect strand properties and performance.Insight into the shearing mechanism and evaluation techniques are discussed with the introduction of triaxial loading to describe the PC-strand tensile and shearing mechanisms. Another important result indicates that the shear strength of PC-strand cable bolting systems has a greater shear strength value than traditional steel bar bolting systems.
文摘Aiming at prestressed anchor cable frame in the presence of reinforcement landslide problem, through the selection of test points, the paper study and tested soil pressure, frame internal force and prestress losses under prestressed anchor cable frame beam, reveal the law of internal force distribution, and provides a theory basis for the rational design of prestressed anchor cable in landslide.