At an accelerating development pace, Hicro-Nano Satellite technology has become one of the most ac- tive research topics in the current aerospace field. Its applications have been extended from engineering education a...At an accelerating development pace, Hicro-Nano Satellite technology has become one of the most ac- tive research topics in the current aerospace field. Its applications have been extended from engineering education and technology demonstration into various other fields, such as communication, remote sensing, navigation and scientific experiments just to name a few, In this paper issues raised on Micro/Nano-Satellites in recent news are reviewed and the opportunities and challenges confronting Micro/Nano-Satellites are analyzed. Then the Plicro/nano-Satellites of Na- tional University of Defense Technology, (NUDT) are briefly introduced. Finally, some suggestions on the development of Micro/Nano-Satellites in the future are proposed.展开更多
Transgenic animal technology has been one of the fastest growing biotechnology areas. The exogenous genes have been introduced into the animal genome by genetic engineering, so that these genes can be inherited and ex...Transgenic animal technology has been one of the fastest growing biotechnology areas. The exogenous genes have been introduced into the animal genome by genetic engineering, so that these genes can be inherited and expressed by offspring to produce desired traits or evaluate function in elite livestock breeds. There are several methodologies for the production of transgenic animals, i.e., (1) microinjection of genes into pronuclei of fertilized ova; (2) DNA transfer by retroviruses; (3) injection of embryonic germ (EG)/embryonic stem (ES) cells previously treated with foreign DNA; (4) DNA transfer into cells and embryos with using liposomes; (5) exogenous DNA transfer while in vitro fertilization by using sperm; (6) electroporation of DNA into sperm, embryos or ova; (7) biolistics; (8) nuclear transfer (NT) with somatic cells, EG or ES cells; (9) germ line stem cell-mediated; (10) gene targeting; (! 1) gene silencing technology with RNA interference; (12) induced pluripotent stem cell; (13) zinc-finger nuclease gene targeting technology. Gene farming is one of the newest and most promising areas in modern biotechnology. Cattle, goats, sheep, pigs and rabbits are the main farm livestock species and fish is also used in transgenic technology. The question of "why make transgenic animals?" is very important. Some of the answers to this question are: (1) to obtain new knowledge; (2) to solve the genetic code; (3) to create genetic disease models; (4) to study the genetic control of physiological systems; (5) to improve animal production traits; (6) to produce new animal products. Transgenic technology is one of the main and important tools in the finding solutions to problems of growing population with their applications to different organisms, and takes more attention and interest every day. Transgenic technology creates opportunities and areas to play with organisms to fulfill the demands of people. Because of this, this paper based on mainly transgenic applications to take people's attention and exhibit its importance.展开更多
文摘At an accelerating development pace, Hicro-Nano Satellite technology has become one of the most ac- tive research topics in the current aerospace field. Its applications have been extended from engineering education and technology demonstration into various other fields, such as communication, remote sensing, navigation and scientific experiments just to name a few, In this paper issues raised on Micro/Nano-Satellites in recent news are reviewed and the opportunities and challenges confronting Micro/Nano-Satellites are analyzed. Then the Plicro/nano-Satellites of Na- tional University of Defense Technology, (NUDT) are briefly introduced. Finally, some suggestions on the development of Micro/Nano-Satellites in the future are proposed.
文摘Transgenic animal technology has been one of the fastest growing biotechnology areas. The exogenous genes have been introduced into the animal genome by genetic engineering, so that these genes can be inherited and expressed by offspring to produce desired traits or evaluate function in elite livestock breeds. There are several methodologies for the production of transgenic animals, i.e., (1) microinjection of genes into pronuclei of fertilized ova; (2) DNA transfer by retroviruses; (3) injection of embryonic germ (EG)/embryonic stem (ES) cells previously treated with foreign DNA; (4) DNA transfer into cells and embryos with using liposomes; (5) exogenous DNA transfer while in vitro fertilization by using sperm; (6) electroporation of DNA into sperm, embryos or ova; (7) biolistics; (8) nuclear transfer (NT) with somatic cells, EG or ES cells; (9) germ line stem cell-mediated; (10) gene targeting; (! 1) gene silencing technology with RNA interference; (12) induced pluripotent stem cell; (13) zinc-finger nuclease gene targeting technology. Gene farming is one of the newest and most promising areas in modern biotechnology. Cattle, goats, sheep, pigs and rabbits are the main farm livestock species and fish is also used in transgenic technology. The question of "why make transgenic animals?" is very important. Some of the answers to this question are: (1) to obtain new knowledge; (2) to solve the genetic code; (3) to create genetic disease models; (4) to study the genetic control of physiological systems; (5) to improve animal production traits; (6) to produce new animal products. Transgenic technology is one of the main and important tools in the finding solutions to problems of growing population with their applications to different organisms, and takes more attention and interest every day. Transgenic technology creates opportunities and areas to play with organisms to fulfill the demands of people. Because of this, this paper based on mainly transgenic applications to take people's attention and exhibit its importance.