An integrated hydrological model has been applied for a rural-urban catchment of the Szamos-Kraszna interfluve geographic area, using the WateRisk integrated hydrological model system. The aim of the hydrological simu...An integrated hydrological model has been applied for a rural-urban catchment of the Szamos-Kraszna interfluve geographic area, using the WateRisk integrated hydrological model system. The aim of the hydrological simulations was to identify the role that the relief plays in the water coverage formation process, and to highlight the possible consequences of it on phosphorus transport processes. To support this aim, the rainfall-runoff and the one-dimensional flow routing modules have been modelled, and maximal water cover has been calculated. Measured water coverage data by remote sensing have been compared to calculated maximum water cover in several ways. Results support the existing perspective on excess water formation namely that the process is very complex, therefore, the coincidence of the locations of measured water cover with calculated maximum water cover based on the DEM (digital elevation model) and the river network is low. Analysis shows that as far as the larger depressions of the area are concerned, the error of the DEM is not high, but it is likely that at locations with small altitude differences, the error of DEM can cause larger errors. The results foreshadow the importance of the micro relief of the area on phosphorus transport.展开更多
文摘An integrated hydrological model has been applied for a rural-urban catchment of the Szamos-Kraszna interfluve geographic area, using the WateRisk integrated hydrological model system. The aim of the hydrological simulations was to identify the role that the relief plays in the water coverage formation process, and to highlight the possible consequences of it on phosphorus transport processes. To support this aim, the rainfall-runoff and the one-dimensional flow routing modules have been modelled, and maximal water cover has been calculated. Measured water coverage data by remote sensing have been compared to calculated maximum water cover in several ways. Results support the existing perspective on excess water formation namely that the process is very complex, therefore, the coincidence of the locations of measured water cover with calculated maximum water cover based on the DEM (digital elevation model) and the river network is low. Analysis shows that as far as the larger depressions of the area are concerned, the error of the DEM is not high, but it is likely that at locations with small altitude differences, the error of DEM can cause larger errors. The results foreshadow the importance of the micro relief of the area on phosphorus transport.