A novel Snake model with region information is proposed to detect and track moving objects. Generally, the region-information-based approach is sensitive to illumination changes and small movement in the background, w...A novel Snake model with region information is proposed to detect and track moving objects. Generally, the region-information-based approach is sensitive to illumination changes and small movement in the background, while the edge-information-based approach often obtains incorrect results for ambiguous images. The two types of information are introduced in computing the image force. Edge-information-based features make the algorithm fast and robust, and region information makes the active confour energy function obtains correct results for ambiguous images. Furthermore, an automatic contour initialization method using double difference images is given to meet the requirement of video sequence tracking. Meanwhile, a simple forecast section is added to estimate the position of the contour in the algorithm so that it can improve the convergence speed of the active contour. Experimental results show that the computation time of the algorithm is less than 0.1 s/frame. And it can be applied to a real-time system.展开更多
Former frequency-domain blind devolution algorithms need to consider a large number of frequency bins and recover the sources in different orders and with different amplitudes in each frequency bin,so they suffer from...Former frequency-domain blind devolution algorithms need to consider a large number of frequency bins and recover the sources in different orders and with different amplitudes in each frequency bin,so they suffer from permutation and amplitude indeterminacy troubles. Based on sliding discrete Fourier transform,the presented deconvolution algorithm can directly recover time-domain sources from frequency-domain convolutive model using single frequency bin. It only needs to execute blind sepa-ration of instantaneous mixture once there are no permutation and amplitude indeterminacy troubles. Compared with former algorithms,the algorithm greatly reduces the computation cost as only one frequency bin is considered. Its good and robust per-formance is demonstrated by simulations when the signal-to-noise-ratio is high.展开更多
The precise detection of flaw echoes buried in backscattefing noise caused by material microstructure is a problem of great importance in uhrasonic non-destructive testing (NDT). In this work, empirical mode decompo...The precise detection of flaw echoes buried in backscattefing noise caused by material microstructure is a problem of great importance in uhrasonic non-destructive testing (NDT). In this work, empirical mode decomposition (EMD) is proposed to deal with ultrasonic signal. A time-frequency filtering method based on EMD is designed to suppress noise and enhance flaw signals. Simulated results are presented, showing that the proposed method has an excellent performance even for a very low signal-to-noise ratio (SNR). The improvement in flaw detection was experimentally verified using stainless steel pipe sample with artificial flaws.展开更多
The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can b...The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.展开更多
A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. T...A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.展开更多
The randomly intermittent spectra (RIS) signal is employed to combat spectrum congestion in radar and other radio services to evade the external interferences in high-frequency (HF) and ultrahigh-frequency (UHF) bands...The randomly intermittent spectra (RIS) signal is employed to combat spectrum congestion in radar and other radio services to evade the external interferences in high-frequency (HF) and ultrahigh-frequency (UHF) bands. However, the spectra discontinuity of the signal gets rise to high range sidelobes when matching the reflected echo, which is much more difficult for targets detection. So it is indispensable to investigate the technique for sidelobes suppression of the range profile when RIS signal is utilized, This paper introduced a new processing technique based on time domain filtering to lower the range sidelobes. A robust and effetive algorithm is adopted to solve the coefficients of the filter, and the restriction on the desired response of the filter is derived. The simulation results show that the peak range sidelobe can be reduced to -27 dB from -9.5 dB while the frequency band span (FBS) is 200 kHz.展开更多
A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessi...A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.展开更多
In this paper, a detection technique for locating and determining the extent of defects and cracks in oil pipelines based on Hilbert-Huang time-frequency analysis is proposed. The ultrasonic signals reflected from def...In this paper, a detection technique for locating and determining the extent of defects and cracks in oil pipelines based on Hilbert-Huang time-frequency analysis is proposed. The ultrasonic signals reflected from defect-free pipelines and from pipelines with defects were processed using Hilbert-Huang transform, a recently developed signal processing technique based on direct extraction of the energy associated with the intrinsic time scales in the signal. Experimental results showed that the proposed method is feasible and can accurately and efficiently determine the location and size of defects in pipelines.展开更多
A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal o...A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal of gas-liquid two-phase flow was preprocessed,and then the AOK theory was used to analyze the dynamic differ-ential pressure signal.The mechanism of two-phase flow was discussed through the time-frequency spectrum.On the condition of steady water flow rate,with the increasing of gas flow rate,the flow pattern changes from bubbly flow to slug flow,then to plug flow,meanwhile,the energy distribution of signal fluctuations show significant change that energy transfer from 15-35 Hz band to 0-8 Hz band;moreover,when the flow pattern is slug flow,there are two wave peaks showed in the time-frequency spectrum.Finally,a number of characteristic variables were defined by using the time-frequency spectrum and the ridge of AOK.When the characteristic variables were visu-ally analyzed,the relationship between different combination of characteristic variables and flow patterns would be gotten.The results show that,this method can explain the law of flow in different flow patterns.And characteristic variables,defined by this method,can get a clear description of the flow information.This method provides a new way for the flow pattern identification,and the percentage of correct prediction is up to 91.11%.展开更多
The proposed blind adaptive multiuser detector utilizes the signature waveform and time information of the desired user. With each received sample vector, the proposed algorithm updates the detector and gives the symb...The proposed blind adaptive multiuser detector utilizes the signature waveform and time information of the desired user. With each received sample vector, the proposed algorithm updates the detector and gives the symbol estimate in the current time slot. Such property facilitates it to track time-varying channels.展开更多
Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavele...Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD) is presented.The watermark is registered by performing SVD on the coefficients generated through DWT and DCT to avoid data modification and host signal degradation.Simulation results show that the proposed zero-watermarking algorithm is strongly robust to common signal processing methods such as requantization,MP3 compression,resampling,addition of white Gaussian noise,and low-pass filtering.展开更多
A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate t...A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate the 1F of a multi-component Chirp signal accurately. Wigner distribution maxima (WDM) are usually utilized for this estimation. But in practice, estimation bias increases when some points deviate from the true IF in high noise environments. This paper presents a new method of multi-component Chirp signal 1F estimation named Wigner Viterbi fit (WVF), based on Wigner-Ville distribution (WVD) and the Viterbi algorithm. First, we transform the WVD of the Chirp signal into digital image, and apply the Viterbi algorithm to separate the components and estimate their IF. At last, we establish a linear model to fit the estimation results. Theoretical analysis and simulation results prove that this new method has high precision and better performance than WDM in high noise environments, and better suppression of interference and the edge effect. Compared with WDM, WVF can reduce the mean square error (MSE) by 50% when the signal to noise ration (SNR) is in the range of-15dB to -11dB. WVF is an effective and promising 1F estimation method.展开更多
A new training symbol weighted by pseudo-noise(PN) sequence is designed and an efficient timing and fre-quency offset estimation scheme for orthogonal frequency division multiplexing(OFDM) systems is proposed. The tim...A new training symbol weighted by pseudo-noise(PN) sequence is designed and an efficient timing and fre-quency offset estimation scheme for orthogonal frequency division multiplexing(OFDM) systems is proposed. The timing synchronization is accomplished by using the piecewise symmetric conjugate of the primitive training symbol and the good autocorrelation of PN weighted factor. The frequency synchronization is finished by utilizing the training symbol whose PN weighted factor is removed after the timing synchronization. Compared with conventional schemes, the pro-posed scheme can achieve a smaller mean square error and provide a wider frequency acquisition range.展开更多
文摘A novel Snake model with region information is proposed to detect and track moving objects. Generally, the region-information-based approach is sensitive to illumination changes and small movement in the background, while the edge-information-based approach often obtains incorrect results for ambiguous images. The two types of information are introduced in computing the image force. Edge-information-based features make the algorithm fast and robust, and region information makes the active confour energy function obtains correct results for ambiguous images. Furthermore, an automatic contour initialization method using double difference images is given to meet the requirement of video sequence tracking. Meanwhile, a simple forecast section is added to estimate the position of the contour in the algorithm so that it can improve the convergence speed of the active contour. Experimental results show that the computation time of the algorithm is less than 0.1 s/frame. And it can be applied to a real-time system.
基金Project (No. 2005EB040486) supported by the National Torch Program of China
文摘Former frequency-domain blind devolution algorithms need to consider a large number of frequency bins and recover the sources in different orders and with different amplitudes in each frequency bin,so they suffer from permutation and amplitude indeterminacy troubles. Based on sliding discrete Fourier transform,the presented deconvolution algorithm can directly recover time-domain sources from frequency-domain convolutive model using single frequency bin. It only needs to execute blind sepa-ration of instantaneous mixture once there are no permutation and amplitude indeterminacy troubles. Compared with former algorithms,the algorithm greatly reduces the computation cost as only one frequency bin is considered. Its good and robust per-formance is demonstrated by simulations when the signal-to-noise-ratio is high.
文摘The precise detection of flaw echoes buried in backscattefing noise caused by material microstructure is a problem of great importance in uhrasonic non-destructive testing (NDT). In this work, empirical mode decomposition (EMD) is proposed to deal with ultrasonic signal. A time-frequency filtering method based on EMD is designed to suppress noise and enhance flaw signals. Simulated results are presented, showing that the proposed method has an excellent performance even for a very low signal-to-noise ratio (SNR). The improvement in flaw detection was experimentally verified using stainless steel pipe sample with artificial flaws.
基金Project(51275030)supported by the National Natural Science Foundation of ChinaProject(2016JBM051)supported by the Fundamental Research Funds for the Central Universities,China
文摘The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.
文摘A novel algorithm based on Radon-Ambiguity Transform (RAT) and Adaptive Signal Decomposition (ASD) is presented for the detection and parameter estimation of multicompo-nent Linear Frequency Modulated (LFM) signals. The key problem lies in the chirplet estimation. Genetic algorithm is employed to search for the optimization parameter of chirplet. High estimation accuracy can be obtained even at low Signal-to-Noisc Ratio(SNR). Finally simulation results are provided to demonstrate the performance of the proposed algorithm.
文摘The randomly intermittent spectra (RIS) signal is employed to combat spectrum congestion in radar and other radio services to evade the external interferences in high-frequency (HF) and ultrahigh-frequency (UHF) bands. However, the spectra discontinuity of the signal gets rise to high range sidelobes when matching the reflected echo, which is much more difficult for targets detection. So it is indispensable to investigate the technique for sidelobes suppression of the range profile when RIS signal is utilized, This paper introduced a new processing technique based on time domain filtering to lower the range sidelobes. A robust and effetive algorithm is adopted to solve the coefficients of the filter, and the restriction on the desired response of the filter is derived. The simulation results show that the peak range sidelobe can be reduced to -27 dB from -9.5 dB while the frequency band span (FBS) is 200 kHz.
基金Project(Z132012)supported by the Second Five Technology-based in Science and Industry Bureau of ChinaProject(YWF1103Q062)supported by the Fundemental Research Funds for the Central Universities in China
文摘A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.
基金Project (No. 2001AA602021) supported by the Hi-Tech Researchand Development Program (863) of China
文摘In this paper, a detection technique for locating and determining the extent of defects and cracks in oil pipelines based on Hilbert-Huang time-frequency analysis is proposed. The ultrasonic signals reflected from defect-free pipelines and from pipelines with defects were processed using Hilbert-Huang transform, a recently developed signal processing technique based on direct extraction of the energy associated with the intrinsic time scales in the signal. Experimental results showed that the proposed method is feasible and can accurately and efficiently determine the location and size of defects in pipelines.
基金Supported by the Natural Science Foundation of Zhejiang Province(Y1100842) the Planning Projects of General Administration of Quality Supervision Inspection and Quarantine of the People's Republic of China(2006QK23)
文摘A time-frequency signal processing method for two-phase flow through a horizontal Venturi based on adaptive optimal-kernel (AOK) was presented in this paper.First,the collected dynamic differential pressure signal of gas-liquid two-phase flow was preprocessed,and then the AOK theory was used to analyze the dynamic differ-ential pressure signal.The mechanism of two-phase flow was discussed through the time-frequency spectrum.On the condition of steady water flow rate,with the increasing of gas flow rate,the flow pattern changes from bubbly flow to slug flow,then to plug flow,meanwhile,the energy distribution of signal fluctuations show significant change that energy transfer from 15-35 Hz band to 0-8 Hz band;moreover,when the flow pattern is slug flow,there are two wave peaks showed in the time-frequency spectrum.Finally,a number of characteristic variables were defined by using the time-frequency spectrum and the ridge of AOK.When the characteristic variables were visu-ally analyzed,the relationship between different combination of characteristic variables and flow patterns would be gotten.The results show that,this method can explain the law of flow in different flow patterns.And characteristic variables,defined by this method,can get a clear description of the flow information.This method provides a new way for the flow pattern identification,and the percentage of correct prediction is up to 91.11%.
基金the National Natural Science Foundation of China(No.60072048)and Natural Science Found of Guangdong Province(No.31390)
文摘The proposed blind adaptive multiuser detector utilizes the signature waveform and time information of the desired user. With each received sample vector, the proposed algorithm updates the detector and gives the symbol estimate in the current time slot. Such property facilitates it to track time-varying channels.
基金supported by the Open Foundation of Jiangsu Engineering Center of Network Monitoring(Nanjing University of Information Science&Technology)(Grant No.KJR1509)the PAPD fundthe CICAEET fund
文摘Traditional watermark embedding schemes inevitably modify the data in a host audio signal and lead to the degradation of the host signal.In this paper,a novel audio zero-watermarking algorithm based on discrete wavelet transform(DWT),discrete cosine transform(DCT),and singular value decomposition(SVD) is presented.The watermark is registered by performing SVD on the coefficients generated through DWT and DCT to avoid data modification and host signal degradation.Simulation results show that the proposed zero-watermarking algorithm is strongly robust to common signal processing methods such as requantization,MP3 compression,resampling,addition of white Gaussian noise,and low-pass filtering.
基金Supported by the National Natural Science Foundation of China under Grant No. 60572098.
文摘A classical time-varying signal, the multi-component Chirp signal has been widely used and the ability to estimate its instantaneous frequency (IF) is very useful. But in noisy environments, it is hard to estimate the 1F of a multi-component Chirp signal accurately. Wigner distribution maxima (WDM) are usually utilized for this estimation. But in practice, estimation bias increases when some points deviate from the true IF in high noise environments. This paper presents a new method of multi-component Chirp signal 1F estimation named Wigner Viterbi fit (WVF), based on Wigner-Ville distribution (WVD) and the Viterbi algorithm. First, we transform the WVD of the Chirp signal into digital image, and apply the Viterbi algorithm to separate the components and estimate their IF. At last, we establish a linear model to fit the estimation results. Theoretical analysis and simulation results prove that this new method has high precision and better performance than WDM in high noise environments, and better suppression of interference and the edge effect. Compared with WDM, WVF can reduce the mean square error (MSE) by 50% when the signal to noise ration (SNR) is in the range of-15dB to -11dB. WVF is an effective and promising 1F estimation method.
基金Supported by the National High Technology Research and Development Program of China ( "863" Program, No.2006AA01Z270)Natural Science Foun-dation of Shaanxi Province (No. 2007F07)+1 种基金Natural Science Foundation of Guangdong Province (No. U0635003)National "111" Program of Intro-ducing Talents of Discipline to Universities (No. B08038)
文摘A new training symbol weighted by pseudo-noise(PN) sequence is designed and an efficient timing and fre-quency offset estimation scheme for orthogonal frequency division multiplexing(OFDM) systems is proposed. The timing synchronization is accomplished by using the piecewise symmetric conjugate of the primitive training symbol and the good autocorrelation of PN weighted factor. The frequency synchronization is finished by utilizing the training symbol whose PN weighted factor is removed after the timing synchronization. Compared with conventional schemes, the pro-posed scheme can achieve a smaller mean square error and provide a wider frequency acquisition range.