According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a hi...According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly.展开更多
Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as t...Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as the differences between them. Also, shock- vibration tests have been accomplished, not only to explain the two shock response signal differences, but also to analyze the response signal characteristics and its ability to carry information. In addition, seismic data acquisition experiments have been carried out under comparable conditions in the field. A contrast analysis of shot gathers and stack profiles acquired with the two geophone types is given in this paper. The results show that the acceleration signal from the acceleration geophone has a better advantage in terms of high signal-to-noise ratio, high accuracy, high resolution, and quantity of information to better meet current and future requirements for seismic exploration.展开更多
Four optimal approaches of high-order finite-impulse response(FIR) digital filters were developed for designing four types filters using neural network algorithms. The solutions were presented as parallel algorithms t...Four optimal approaches of high-order finite-impulse response(FIR) digital filters were developed for designing four types filters using neural network algorithms. The solutions were presented as parallel algorithms to approximate the desired frequency response specification. Therefore, these methods avoid matrix inversion, and make a fast calculation of the filter’s coefficients possible. The convergence theorems of these proposed algorithms were presented and proved to illustrate them stable, and the implementation of these methods was described together with some design guidelines. The simulation results show that the ripples of the designed FIR filters are significantly little in the pass-band and stop-band, and the proposed algorithms are of fast convergence.展开更多
Hydrogen-free diamond-like carbon (DLC) thin films were deposited at low temperature (less than 100~C) by an RF magne- tron sputtering facility. DLC films have the ability to change the sound velocity (E/p) in l...Hydrogen-free diamond-like carbon (DLC) thin films were deposited at low temperature (less than 100~C) by an RF magne- tron sputtering facility. DLC films have the ability to change the sound velocity (E/p) in loudspeakers for applications of hard coating. The hydrogen-free DLC films were coated onto PEI diaphragm substrates. The ID/IG ratio and the surface roughness are 2.09 and less than 0.86 nm (Ra) with a scanning area of 50 um x 50 um, respectively. Frequency response analysis of the DLC films on the diaphragm shows that the high frequency response increases by 0.2 dB-5.1 dB (6 kHz-ll.2 kHz), -0.4 dB-1.8 dB (11.8 kHz-20 kHz) on average. On the basis of the results of this study, we validated that it was feasible to sputter hydrogen-free DLC films on polymer substrates for mass production. These results also provided useful parameters for future applications of electro-acoustic devices.展开更多
基金supported by the National Science and Technology Major Project (No. 2011ZX05019-008)the National Natural Science Foundation of China (No. 41074080)+1 种基金the Science Foundation of China University of Petroleum, Beijing (No. KYJJ2012-05-11)supported by the CNPC international collaboration program through the Edinburgh Anisotropy Project (EAP) of the British Geological Survey (BGS) and the CNPC Key Geophysical Laboratory at the China University of Petroleum and CNPC geophysical prospecting projects for new method and technique research
文摘According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly.
基金supported jointly by the National Natural Science Foundation Fund of China (No.40930418)Chinese government-funded scientific program of the Sino Probe Deep Exploration in China (SinoProbe03)the National Science and Technology Support Program Project (No. 2011BAB04B01)
文摘Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as the differences between them. Also, shock- vibration tests have been accomplished, not only to explain the two shock response signal differences, but also to analyze the response signal characteristics and its ability to carry information. In addition, seismic data acquisition experiments have been carried out under comparable conditions in the field. A contrast analysis of shot gathers and stack profiles acquired with the two geophone types is given in this paper. The results show that the acceleration signal from the acceleration geophone has a better advantage in terms of high signal-to-noise ratio, high accuracy, high resolution, and quantity of information to better meet current and future requirements for seismic exploration.
基金Project (50677014) supported by the National Natural Science Foundation of China project (20060532002) supported by the Doctoral Special Fund of Ministry of Education, China+1 种基金project (NCET-04-0767) supported by the Program for New Century Excellent Talents in Universityprojects(06JJ2024, 03GKY3115, 04FJ2003, and 05GK2005) supported by the Foundation of Hunan Provincial Science and Technology
文摘Four optimal approaches of high-order finite-impulse response(FIR) digital filters were developed for designing four types filters using neural network algorithms. The solutions were presented as parallel algorithms to approximate the desired frequency response specification. Therefore, these methods avoid matrix inversion, and make a fast calculation of the filter’s coefficients possible. The convergence theorems of these proposed algorithms were presented and proved to illustrate them stable, and the implementation of these methods was described together with some design guidelines. The simulation results show that the ripples of the designed FIR filters are significantly little in the pass-band and stop-band, and the proposed algorithms are of fast convergence.
文摘Hydrogen-free diamond-like carbon (DLC) thin films were deposited at low temperature (less than 100~C) by an RF magne- tron sputtering facility. DLC films have the ability to change the sound velocity (E/p) in loudspeakers for applications of hard coating. The hydrogen-free DLC films were coated onto PEI diaphragm substrates. The ID/IG ratio and the surface roughness are 2.09 and less than 0.86 nm (Ra) with a scanning area of 50 um x 50 um, respectively. Frequency response analysis of the DLC films on the diaphragm shows that the high frequency response increases by 0.2 dB-5.1 dB (6 kHz-ll.2 kHz), -0.4 dB-1.8 dB (11.8 kHz-20 kHz) on average. On the basis of the results of this study, we validated that it was feasible to sputter hydrogen-free DLC films on polymer substrates for mass production. These results also provided useful parameters for future applications of electro-acoustic devices.