Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based ...Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.展开更多
The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response charact...The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response characteristics on deeply embedded large cylindrical structures under random waves, and accordingly to offer valuable findings for engineering, the authors designed wave flume experiments to investigate comparatively dynamic wave pressures on a single and on continuous cylinders with two different embedment depths in response to two wave spectra.The time histories of the water surface elevation and the corresponding dynamic wave pressures exerted on the cylinder were analyzed in the frequency domain. By calculating the transfer function and spectral density for dynamic wave pressures along the height and around the circumference of the cylinder, experimental results of the single cylinder were compared with the theoretical results based on the linear diffraction theory, and detailed comparisons were also carried out between the single and continuous cylinders. Some new findings and the corresponding analysis are reported in present paper. The investigation on continuous cylinders will be used in particular for reference in engineering applications because information is scarce on studying such kind of problem both analytically and experimentally.展开更多
Full waveform inversion( FWI) is a high resolution inversion method,which can reveal detailed information of the structure and lithology under complex geological background. It is limited by many kinds of noises when ...Full waveform inversion( FWI) is a high resolution inversion method,which can reveal detailed information of the structure and lithology under complex geological background. It is limited by many kinds of noises when the method applied to the real seismic data. Based on Huber function criterion,the objective function combinates the anti-noise of L1 norm and the stability of L2 norm in theory,the authors derive the gradient formula of the Huber function by using L-BFGS algorithm for FWI. The new method is proved by synthetic seismic data with the Gaussian noise and the impulse noise. Numerical test results show that L-BFGS algorithm is applied to the frequency domain FWI with the convergence speed and high calculation accuracy,and can effectively reduce computer memory usage; and the Huber function is more robust and stable than L2 norm even with the noises.展开更多
基金supported by the China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2011ZX05004-003)the Basic Research Programs of CNPC during the 12th Five-Year Plan Period (NO.2011A-3603)+1 种基金the Natural Science Foundation of China (No.41104066)the RIPED Young Professional Innovation Fund (NO.2010-13-16-02, 2010-A-26-02)
文摘Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.
文摘The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response characteristics on deeply embedded large cylindrical structures under random waves, and accordingly to offer valuable findings for engineering, the authors designed wave flume experiments to investigate comparatively dynamic wave pressures on a single and on continuous cylinders with two different embedment depths in response to two wave spectra.The time histories of the water surface elevation and the corresponding dynamic wave pressures exerted on the cylinder were analyzed in the frequency domain. By calculating the transfer function and spectral density for dynamic wave pressures along the height and around the circumference of the cylinder, experimental results of the single cylinder were compared with the theoretical results based on the linear diffraction theory, and detailed comparisons were also carried out between the single and continuous cylinders. Some new findings and the corresponding analysis are reported in present paper. The investigation on continuous cylinders will be used in particular for reference in engineering applications because information is scarce on studying such kind of problem both analytically and experimentally.
基金Supported by the National "863" Project(No.2014AA06A605)
文摘Full waveform inversion( FWI) is a high resolution inversion method,which can reveal detailed information of the structure and lithology under complex geological background. It is limited by many kinds of noises when the method applied to the real seismic data. Based on Huber function criterion,the objective function combinates the anti-noise of L1 norm and the stability of L2 norm in theory,the authors derive the gradient formula of the Huber function by using L-BFGS algorithm for FWI. The new method is proved by synthetic seismic data with the Gaussian noise and the impulse noise. Numerical test results show that L-BFGS algorithm is applied to the frequency domain FWI with the convergence speed and high calculation accuracy,and can effectively reduce computer memory usage; and the Huber function is more robust and stable than L2 norm even with the noises.