期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
融合频域注意力机制和解耦头的YOLOv5带钢表面缺陷检测 被引量:17
1
作者 孙泽强 陈炳才 +2 位作者 崔晓博 王磊 陆雅诺 《计算机应用》 CSCD 北大核心 2023年第1期242-249,共8页
针对带钢表面缺陷在实际场景中检测精度低,易出现漏检和误检的情况,构建一种YOLOv5-CFD模型对带钢缺陷目标进行更精确的检测,该模型由CSPDarknet53、FcaNet与解耦检测头(Decoupled head)组成。首先,采用模糊C均值(FCM)算法对东北大学公... 针对带钢表面缺陷在实际场景中检测精度低,易出现漏检和误检的情况,构建一种YOLOv5-CFD模型对带钢缺陷目标进行更精确的检测,该模型由CSPDarknet53、FcaNet与解耦检测头(Decoupled head)组成。首先,采用模糊C均值(FCM)算法对东北大学公开的NEU-DET热轧带钢表面缺陷检测数据集中的锚框进行聚类,优化先验框和真实框之间的匹配度;其次,为提取目标区域丰富的细节信息,在原始YOLOv5算法基础上添加频域通道注意力模块FcaNet;最后,采用解耦检测头将分类任务和回归任务分离。在NEU-DET数据集上的实验结果表明,改进的YOLOv5算法在引入较少参数量的情况下,检测精度提高了4.2个百分点,平均精度均值(mAP)达到85.5%,每秒传输帧数(Frames Per Second,FPS)达到27.71,与原YOLOv5相差不大,能够满足检测实时性的要求。 展开更多
关键词 YOLOv5 频域注意力机制 解耦头 锚框 聚类算法 表面缺陷检测
下载PDF
频域注意力机制下的癫痫脑电信号分类 被引量:8
2
作者 孙红帅 王霞 +2 位作者 柳萱 张连超 赵兴杰 《西安交通大学学报》 EI CAS CSCD 北大核心 2021年第2期129-135,共7页
为提高癫痫脑电信号特征分类的准确率,基于残差网络结构的深度学习,提出了一种频域注意力机制下的癫痫脑电信号分类(FDAM)算法。首先分析所提取的脑电信号特征,然后根据信号特征主要分布在时频域的幅值中的特点,通过残差网络对时频域幅... 为提高癫痫脑电信号特征分类的准确率,基于残差网络结构的深度学习,提出了一种频域注意力机制下的癫痫脑电信号分类(FDAM)算法。首先分析所提取的脑电信号特征,然后根据信号特征主要分布在时频域的幅值中的特点,通过残差网络对时频域幅值特征进行二次提取,最后为了使残差网络提取的特征集中在与分类结果相关性较大的频域,设计了一种频域注意力机制,在深度学习过程中增强该类频域的幅值特征,有效提高了癫痫脑电信号的分类准确率。采用公开数据库PhysioNet中的CHB-MIT Scalp EEG Database数据库对算法的分类性能进行了验证,实验结果表明,FDAM算法对正常状态和癫痫发作状态的脑电信号分类准确率达到98.05%,特异性为99.34%,灵敏度为96.12%。 展开更多
关键词 频域注意力机制 残差网络 频域特征 癫痫 脑电信号
下载PDF
基于频域注意力的水下目标检测算法研究
3
作者 张天 温显斌 +3 位作者 薛彦兵 袁立明 徐海霞 史芙蓉 《光电子.激光》 CAS CSCD 北大核心 2024年第6期604-611,共8页
针对水下目标检测过程中由于水下成像模糊、目标物与背景对比度低等原因导致的水下图像特征提取与目标理解困难的问题,本文提出了一种基于频域注意力的水下目标检测算法。该方法首先将训练集图像变换到频域,并使用低频特征引导组件(low ... 针对水下目标检测过程中由于水下成像模糊、目标物与背景对比度低等原因导致的水下图像特征提取与目标理解困难的问题,本文提出了一种基于频域注意力的水下目标检测算法。该方法首先将训练集图像变换到频域,并使用低频特征引导组件(low frequency feature guiding suite,LFGS)计算频率分量,然后该分量将作为参数被应用到低频特征提取模块(low frequency feature extraction model,LFM)来更好地提取图像的低频特征,融合了图像低频信息的特征经过进一步特征提取生成高层特征,最后将高层特征输入到检测头中进行检测。在URPC2021数据集上进行验证,平均精度均值达到了83.35%,验证了本文方法的有效性。 展开更多
关键词 水下目标检测 频域注意力 离散余弦变换(DCT)
原文传递
基于频域通道注意力的YOLOv3网络的雾天海洋图像船舶检测 被引量:3
4
作者 叶乐 李朝锋 《上海海事大学学报》 北大核心 2023年第2期18-24,共7页
为解决在雾天背景下现有的船舶检测算法准确率低、召回率不高的问题,在YOLOv3网络的特征提取模块加入空间金字塔池化模块用以丰富特征图的表达能力,在特征融合模块引入频域通道注意力机制来抑制背景噪声,在预测模块采用K均值算法重新设... 为解决在雾天背景下现有的船舶检测算法准确率低、召回率不高的问题,在YOLOv3网络的特征提取模块加入空间金字塔池化模块用以丰富特征图的表达能力,在特征融合模块引入频域通道注意力机制来抑制背景噪声,在预测模块采用K均值算法重新设计预测锚框大小以适应待检测目标的形状。实验结果表明:基于频域通道注意力的YOLOv3网络在雾天背景下对船舶的检测精度更高,在测试集上平均精确率可达到92.98%,准确率可达到93.06%,召回率可达到92.25%;检测速度可达到61帧/s。本文算法满足船舶实时检测的需求,为未来智能船舶的发展提出了一种兼顾准确率和实时性的船舶检测方法。 展开更多
关键词 船舶检测 卷积神经网络 频域通道注意力机制 YOLOv3
下载PDF
基于改进Faster R-CNN的红外目标检测算法 被引量:1
5
作者 汪西晨 彭富伦 +1 位作者 李业勋 张俊举 《应用光学》 CAS 北大核心 2024年第2期346-353,共8页
为提升红外目标的检测精度,提出了一种引入频域注意力机制的Faster R-CNN红外目标检测算法。首先,针对红外图像边缘模糊和噪声问题,设计了一种并行的图像增强预处理结构;其次,在Faster R-CNN中引入频域注意力机制,设计了一种新型红外目... 为提升红外目标的检测精度,提出了一种引入频域注意力机制的Faster R-CNN红外目标检测算法。首先,针对红外图像边缘模糊和噪声问题,设计了一种并行的图像增强预处理结构;其次,在Faster R-CNN中引入频域注意力机制,设计了一种新型红外目标检测主干网络;最后,引入路径增强金字塔结构,融合多尺度特征进行预测,利用底层网络丰富的位置信息,提升检测精度。在红外飞机的数据集上进行实验,结果表明,改进后的Faster R-CNN目标检测框架比以ResNet50为主干的算法的AP提升了7.6%。此外,与目前主流算法对比,本文算法提高了红外目标的检测精度,验证了算法改进的有效性。 展开更多
关键词 红外目标检测 图像增强 Faster R-CNN 频域注意力机制 多尺度特征融合
下载PDF
改进YOLOv4-tiny的安全帽佩戴检测算法 被引量:10
6
作者 王建波 武友新 《计算机工程与应用》 CSCD 北大核心 2023年第4期183-190,共8页
针对已有的安全帽检测方法存在的模型参数量大,难以部署在边缘设备上,以及对较小目标检测效果不好等问题,提出一种改进YOLOv4-tiny的轻量级安全帽检测模型。针对小目标丢失过多问题,增加了检测小目标的尺度,提升模型关注小目标的能力。... 针对已有的安全帽检测方法存在的模型参数量大,难以部署在边缘设备上,以及对较小目标检测效果不好等问题,提出一种改进YOLOv4-tiny的轻量级安全帽检测模型。针对小目标丢失过多问题,增加了检测小目标的尺度,提升模型关注小目标的能力。提出了一种轻量级特征融合结构,缓解特征融合部分的语义混叠问题,并且在模型中融入了优化的注意力模块,提升模型捕获上下文信息的能力。针对分类与回归任务之间的冲突,将模型预测头替换为解耦合的预测头,采用并行的卷积分别进行分类与回归任务。将改进的模型命名为HM-YOLO,通过实验验证了HM-YOLO算法的有效性,相比YOLOv4-tiny模型,HM-YOLO模型平均精度提升了14.2个百分点,参数量减少了19%,检测速度为为63 FPS,具有良好的检测精度和实时性,更易于部署在边缘设备上。 展开更多
关键词 小目标检测 频域注意力 解耦头 YOLOv4 轻量级网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部