针对带钢表面缺陷在实际场景中检测精度低,易出现漏检和误检的情况,构建一种YOLOv5-CFD模型对带钢缺陷目标进行更精确的检测,该模型由CSPDarknet53、FcaNet与解耦检测头(Decoupled head)组成。首先,采用模糊C均值(FCM)算法对东北大学公...针对带钢表面缺陷在实际场景中检测精度低,易出现漏检和误检的情况,构建一种YOLOv5-CFD模型对带钢缺陷目标进行更精确的检测,该模型由CSPDarknet53、FcaNet与解耦检测头(Decoupled head)组成。首先,采用模糊C均值(FCM)算法对东北大学公开的NEU-DET热轧带钢表面缺陷检测数据集中的锚框进行聚类,优化先验框和真实框之间的匹配度;其次,为提取目标区域丰富的细节信息,在原始YOLOv5算法基础上添加频域通道注意力模块FcaNet;最后,采用解耦检测头将分类任务和回归任务分离。在NEU-DET数据集上的实验结果表明,改进的YOLOv5算法在引入较少参数量的情况下,检测精度提高了4.2个百分点,平均精度均值(mAP)达到85.5%,每秒传输帧数(Frames Per Second,FPS)达到27.71,与原YOLOv5相差不大,能够满足检测实时性的要求。展开更多
针对水下目标检测过程中由于水下成像模糊、目标物与背景对比度低等原因导致的水下图像特征提取与目标理解困难的问题,本文提出了一种基于频域注意力的水下目标检测算法。该方法首先将训练集图像变换到频域,并使用低频特征引导组件(low ...针对水下目标检测过程中由于水下成像模糊、目标物与背景对比度低等原因导致的水下图像特征提取与目标理解困难的问题,本文提出了一种基于频域注意力的水下目标检测算法。该方法首先将训练集图像变换到频域,并使用低频特征引导组件(low frequency feature guiding suite,LFGS)计算频率分量,然后该分量将作为参数被应用到低频特征提取模块(low frequency feature extraction model,LFM)来更好地提取图像的低频特征,融合了图像低频信息的特征经过进一步特征提取生成高层特征,最后将高层特征输入到检测头中进行检测。在URPC2021数据集上进行验证,平均精度均值达到了83.35%,验证了本文方法的有效性。展开更多
文摘针对带钢表面缺陷在实际场景中检测精度低,易出现漏检和误检的情况,构建一种YOLOv5-CFD模型对带钢缺陷目标进行更精确的检测,该模型由CSPDarknet53、FcaNet与解耦检测头(Decoupled head)组成。首先,采用模糊C均值(FCM)算法对东北大学公开的NEU-DET热轧带钢表面缺陷检测数据集中的锚框进行聚类,优化先验框和真实框之间的匹配度;其次,为提取目标区域丰富的细节信息,在原始YOLOv5算法基础上添加频域通道注意力模块FcaNet;最后,采用解耦检测头将分类任务和回归任务分离。在NEU-DET数据集上的实验结果表明,改进的YOLOv5算法在引入较少参数量的情况下,检测精度提高了4.2个百分点,平均精度均值(mAP)达到85.5%,每秒传输帧数(Frames Per Second,FPS)达到27.71,与原YOLOv5相差不大,能够满足检测实时性的要求。
文摘针对水下目标检测过程中由于水下成像模糊、目标物与背景对比度低等原因导致的水下图像特征提取与目标理解困难的问题,本文提出了一种基于频域注意力的水下目标检测算法。该方法首先将训练集图像变换到频域,并使用低频特征引导组件(low frequency feature guiding suite,LFGS)计算频率分量,然后该分量将作为参数被应用到低频特征提取模块(low frequency feature extraction model,LFM)来更好地提取图像的低频特征,融合了图像低频信息的特征经过进一步特征提取生成高层特征,最后将高层特征输入到检测头中进行检测。在URPC2021数据集上进行验证,平均精度均值达到了83.35%,验证了本文方法的有效性。