In order to satisfy increasingly greater demand for the performance of communication systems, a throughput efficient wireless system based on the extended binary phase shift keying (EBPSK) modulation is presented. S...In order to satisfy increasingly greater demand for the performance of communication systems, a throughput efficient wireless system based on the extended binary phase shift keying (EBPSK) modulation is presented. Simultaneously, corresponding analysis of power spectra is also given with a brief process. The optimal waveform is proposed without useful information loss, by removing linear spectra presenting periodic components. On this basis, the reasonable definition of bandwidth is discussed, which indicates that the EBPSK belongs to the category of the ultra narrow band (UNB) throughput-efficient communication. Meanwhile, the modulation parameters' effects on bandwidth, transmission rate and transmission performance are analyzed. Results illustrate the validity of theoretical analysis and spectrum optimization. Results also prove that this UNB system can obtain good bit error rate (BER) performance with high spectra efficiency.展开更多
During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies...During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies. If the advantages of high-sensitivity data and conventional data are combined, the effective bandwidth will be broadened. Considering this, we propose a partial frequency band match filtering method which can combine the advantages of both high frequency and conventional frequency ranges. By introducing Ricker wavelets with different dominant frequencies and amplitudes, we established a theoretical model which possesses characteristics of both types of seismic data and demonstrates the feasibility of the partial frequency band match filtering method. A test using single shot records shows the effectiveness of this method for widening the effective frequency band.展开更多
To meet the increasing demand of wireless broadband applications in future 5G cellular networks, Device-to-Device(D2D) communications serve as a candidate paradigm to improve spectrum efficiency. Considering the chall...To meet the increasing demand of wireless broadband applications in future 5G cellular networks, Device-to-Device(D2D) communications serve as a candidate paradigm to improve spectrum efficiency. Considering the challenges after D2 D transmission is introduced for future cellular networks, this paper deals with mode selection and resource allocation issues related with D2 D communications. First, we propose a mode selection scheme which aims at guaranteeing the transmission of cellular users and also considering the potential interference. We analyze the condition under which D2 D underlay mode should be used. Second, we answer the question of "how to effectively reuse cellular resource once underlaying mode is adopted". We further present a resource allocation scheme that focuses on minimizing overall interference as well as a power control method to improve the performance of D2 D systems. Simulation results demonstrate that system parameters greatly affect the switching condition of mode selection and probability of choosing underlay mode. Furthermore, for D2 D underlaying scenario, the proposed resource allocation algorithm guarantees the transmission of cellular users with consideration of transmission requirements of D2 D users. Hence, the proposed scheme can achieve better user experience.展开更多
The frequency in middle of magnon energy band in a five-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that four energy gaps and corresp...The frequency in middle of magnon energy band in a five-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that four energy gaps and corresponding four frequencie in middle of energy gaps exist in the magnon band along Kx direction perpendicular to the superlattice plane. The spin quantum numbers and the interlayer exchange couplings all affect the four frequencies in middle of the energy gaps. When all interlayer exchange couplings are same, the effect of spin quantum numbers on the frequency wg1 in middle of the energy gap Δw12 is complicated, and the frequency wg1 depends on the match of spin quantum numbers in each layer. Meanwhile, the frequencies wg2, wg3, and wg4 in middle of other energy gaps increase monotonously with increasing spin quantum numbers. When the spin quantum numbers in each layer are same, the frequencies wg1, wg2, wg3, and wg4 all increase monotonously with increasing interlayer exchange couplings.展开更多
The IEEE 802.22 standard based on wireless Cognitive Radio (CR) is an optimal solution to resolve the inefficient spectrum utility problem. In this paper, we focus on the spectrum allocation in IEEE 802.22 mesh networ...The IEEE 802.22 standard based on wireless Cognitive Radio (CR) is an optimal solution to resolve the inefficient spectrum utility problem. In this paper, we focus on the spectrum allocation in IEEE 802.22 mesh networks and propose a new graph-theory algorithm. The algorithm aims at two objectives: one is the sum of the allocated channel bandwidth is maximum, and the other is the number of users can be active simultaneity is maximum. In this proposed algorithm, the topology of network was modeled as a general graph and could be transformed into a weighted complete bipartite-graph by three processes. The simulations show that the presented algorithm can improve the performance of spectrum allocation.展开更多
We perform an in-plane optical spectroscopy measurement on high quality FeSe single crystals grown by a vapor transport technique. Below the structural transition at Ts - 90 K, the reflectivity spectrum clearly shows ...We perform an in-plane optical spectroscopy measurement on high quality FeSe single crystals grown by a vapor transport technique. Below the structural transition at Ts - 90 K, the reflectivity spectrum clearly shows a gradual suppression around 400 cm-1 and the conductivity spectrum shows a peak at higher frequency. The energy scale of this gap-like feature is comparable to the width of the band splitting observed by ARPES. The low-frequency conductivity consists of two Drude components and the overall plasma frequency is smaller than that of the FeAs based compounds, suggesting a lower cartier density or stronger correlation effect. The plasma frequency becomes even smaller below Ts which agrees with the very small Fermi energy estimated by other experiments. Similar to iron pnictides, a clear temperature-induced spectral weight transfer is observed for FeSe, being indicative of strong correlation effect.展开更多
基金The National Natural Science Foundation of China(No.60472054)the Natural Science Foundation of Jiangsu Province(No.BK2007103)
文摘In order to satisfy increasingly greater demand for the performance of communication systems, a throughput efficient wireless system based on the extended binary phase shift keying (EBPSK) modulation is presented. Simultaneously, corresponding analysis of power spectra is also given with a brief process. The optimal waveform is proposed without useful information loss, by removing linear spectra presenting periodic components. On this basis, the reasonable definition of bandwidth is discussed, which indicates that the EBPSK belongs to the category of the ultra narrow band (UNB) throughput-efficient communication. Meanwhile, the modulation parameters' effects on bandwidth, transmission rate and transmission performance are analyzed. Results illustrate the validity of theoretical analysis and spectrum optimization. Results also prove that this UNB system can obtain good bit error rate (BER) performance with high spectra efficiency.
基金financially supported by the National Natural Science Foundation of China(No.41104072)College Students Science and Technology Innovation Activity Plan in Zhejiang Province(No. 2012R401214)
文摘During seismic data acquisition, a high-sensitivity geophone with a high inherent frequency can increase high frequency energy by suppressing low frequency signals. This could cause a worse response at low frequencies. If the advantages of high-sensitivity data and conventional data are combined, the effective bandwidth will be broadened. Considering this, we propose a partial frequency band match filtering method which can combine the advantages of both high frequency and conventional frequency ranges. By introducing Ricker wavelets with different dominant frequencies and amplitudes, we established a theoretical model which possesses characteristics of both types of seismic data and demonstrates the feasibility of the partial frequency band match filtering method. A test using single shot records shows the effectiveness of this method for widening the effective frequency band.
基金supported by the National Natural Science Foundation of China(No.61501371)National 863 High Tech R&D Program of China(project number:2014AA01A703)+1 种基金National Science and Technology Major Project of the Ministry of Science and Technology of China(project number:2014ZX03001025-006)The international Exchange and Cooperation Projects of Shaanxi Province(project number:2016KW-046)
文摘To meet the increasing demand of wireless broadband applications in future 5G cellular networks, Device-to-Device(D2D) communications serve as a candidate paradigm to improve spectrum efficiency. Considering the challenges after D2 D transmission is introduced for future cellular networks, this paper deals with mode selection and resource allocation issues related with D2 D communications. First, we propose a mode selection scheme which aims at guaranteeing the transmission of cellular users and also considering the potential interference. We analyze the condition under which D2 D underlay mode should be used. Second, we answer the question of "how to effectively reuse cellular resource once underlaying mode is adopted". We further present a resource allocation scheme that focuses on minimizing overall interference as well as a power control method to improve the performance of D2 D systems. Simulation results demonstrate that system parameters greatly affect the switching condition of mode selection and probability of choosing underlay mode. Furthermore, for D2 D underlaying scenario, the proposed resource allocation algorithm guarantees the transmission of cellular users with consideration of transmission requirements of D2 D users. Hence, the proposed scheme can achieve better user experience.
基金Supported by the Natural Science Foundation of Liaoning Province of China under Grant No. 20062040
文摘The frequency in middle of magnon energy band in a five-layer ferromagnetic superlattice is studied by using the linear spin-wave approach and Green's function technique. It is found that four energy gaps and corresponding four frequencie in middle of energy gaps exist in the magnon band along Kx direction perpendicular to the superlattice plane. The spin quantum numbers and the interlayer exchange couplings all affect the four frequencies in middle of the energy gaps. When all interlayer exchange couplings are same, the effect of spin quantum numbers on the frequency wg1 in middle of the energy gap Δw12 is complicated, and the frequency wg1 depends on the match of spin quantum numbers in each layer. Meanwhile, the frequencies wg2, wg3, and wg4 in middle of other energy gaps increase monotonously with increasing spin quantum numbers. When the spin quantum numbers in each layer are same, the frequencies wg1, wg2, wg3, and wg4 all increase monotonously with increasing interlayer exchange couplings.
文摘The IEEE 802.22 standard based on wireless Cognitive Radio (CR) is an optimal solution to resolve the inefficient spectrum utility problem. In this paper, we focus on the spectrum allocation in IEEE 802.22 mesh networks and propose a new graph-theory algorithm. The algorithm aims at two objectives: one is the sum of the allocated channel bandwidth is maximum, and the other is the number of users can be active simultaneity is maximum. In this proposed algorithm, the topology of network was modeled as a general graph and could be transformed into a weighted complete bipartite-graph by three processes. The simulations show that the presented algorithm can improve the performance of spectrum allocation.
基金supported by the National Natural Science Foundation of China(11120101003,11327806)the National Basic Research Program of China(2012CB821403)
文摘We perform an in-plane optical spectroscopy measurement on high quality FeSe single crystals grown by a vapor transport technique. Below the structural transition at Ts - 90 K, the reflectivity spectrum clearly shows a gradual suppression around 400 cm-1 and the conductivity spectrum shows a peak at higher frequency. The energy scale of this gap-like feature is comparable to the width of the band splitting observed by ARPES. The low-frequency conductivity consists of two Drude components and the overall plasma frequency is smaller than that of the FeAs based compounds, suggesting a lower cartier density or stronger correlation effect. The plasma frequency becomes even smaller below Ts which agrees with the very small Fermi energy estimated by other experiments. Similar to iron pnictides, a clear temperature-induced spectral weight transfer is observed for FeSe, being indicative of strong correlation effect.