期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
初中生解决贝叶斯推理问题的认知研究 被引量:2
1
作者 廖运章 《数学教育学报》 北大核心 2010年第5期56-58,74,共4页
背景、年级及其交互作用显著影响被试正确估计贝叶斯推理问题,信息表征影响不显著,九年级被试成绩优于八年级;初中生解决贝叶斯推理问题仍然是困难的,无论是频数表征还是概率表征,正确解答的比率都不高;被试虽不了解贝叶斯公式,... 背景、年级及其交互作用显著影响被试正确估计贝叶斯推理问题,信息表征影响不显著,九年级被试成绩优于八年级;初中生解决贝叶斯推理问题仍然是困难的,无论是频数表征还是概率表征,正确解答的比率都不高;被试虽不了解贝叶斯公式,但能在具体情境中发现贝叶斯原理,问题情节、数据大小差距等影响被试的策略选择与正确估计. 展开更多
关键词 初中生 贝叶斯推理 概率表征 频数表征
下载PDF
Frequency-hopping transmitter fingerprint feature recognition with kernel projection and joint representation
2
作者 Ping SUI Ying GUO +1 位作者 Kun-feng ZHANG Hong-guang LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第8期1133-1147,共15页
Frequency-hopping(FH)is one of the commonly used spread spectrum techniques that finds wide applications in communications and radar systems because of its inherent capability of low interception,good confidentiality,... Frequency-hopping(FH)is one of the commonly used spread spectrum techniques that finds wide applications in communications and radar systems because of its inherent capability of low interception,good confidentiality,and strong antiinterference.However,non-cooperation FH transmitter classification is a significant and challenging issue for FH transmitter fingerprint feature recognition,since it not only is sensitive to noise but also has non-linear,non-Gaussian,and non-stability characteristics,which make it difficult to guarantee the classification in the original signal space.Some existing classifiers,such as the sparse representation classifier(SRC),generally use an individual representation rather than all the samples to classify the test data,which over-emphasizes sparsity but ignores the collaborative relationship among the given set of samples.To address these problems,we propose a novel classifier,called the kernel joint representation classifier(KJRC),for FH transmitter fingerprint feature recognition,by integrating kernel projection,collaborative feature representation,and classifier learning into a joint framework.Extensive experiments on real-world FH signals demonstrate the effectiveness of the proposed method in comparison with several state-of-the-art recognition methods. 展开更多
关键词 Frequency-hopping Fingerprint feature Kernel function Joint representation Transmitter recognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部