Littorina fabalis is an intertidal snail commonly living on the brown algae Fucus vesiculosus and showing frequent shell-color polymorphisms in the wild. The evolutionary mechanism underlying this polymorphism is curr...Littorina fabalis is an intertidal snail commonly living on the brown algae Fucus vesiculosus and showing frequent shell-color polymorphisms in the wild. The evolutionary mechanism underlying this polymorphism is currently unknown. Shell color variation was studied in mated and non-mated specimens of this species from different microareas in one locality from NW Spain, in order to estimate sexual selection and assortative mating that may (still) be operating in this population. The analyses across microareas allowed us to investigate frequency-dependent selection and assortative mating components, mechanisms that could maintain the polymorphism. The presence of shell scars caused by crab attacks, an environmental variable not related with sexual selection or assortative mating, was used as experimental control. This study provides new evidence of significant disas- sortative mating and some degree of sexual selection against some shell colors, supporting the results found 21 years ago in a similar study, i.e. in the same species and locality. The similarity of these estimates during the studied period suggests that this experimental approach is consistent and valid to be extended to other populations and organisms. In addition, sexual selection and assortative mating estimates did not change across microareas differing in shell color frequencies, suggesting than the polymor- phism can not be maintained by a frequency-dependent (sexual selection-based) mechanism. Our main hypothesis is that negative assortative mating could contribute to the maintenance of the polymorphism, perhaps by males showing distinct female color preferences when searching for mates [Current Zoology 58 (3): 463-474, 2012].展开更多
Aims The limitations of classical Lotka–Volterra models for analyzing and interpreting competitive interactions among plant species have become increasingly clear in recent years.Three of the problems that have been ...Aims The limitations of classical Lotka–Volterra models for analyzing and interpreting competitive interactions among plant species have become increasingly clear in recent years.Three of the problems that have been identified are(i)the absence of frequency-dependence,which is important for long-term coexistence of species,(ii)the need to take unmeasured(often unmeasurable)variables influencing individual performance into account(e.g.spatial variation in soil nutrients or pathogens)and(iii)the need to separate measurement error from biological variation.Methods We modified the classical Lotka–Volterra competition models to address these limitations.We fitted eight alternative models to pin-point cover data on Festuca ovina and Agrostis capillaris over 3 years in an herbaceous plant community in Denmark.A Bayesian modeling framework was used to ascertain whether the model amendments improve the performance of the models and increase their ability to predict community dynamics and to test hypotheses.Important Findings Inclusion of frequency-dependence and measurement error,but not unmeasured variables,improved model performance greatly.Our results emphasize the importance of comparing alternative models in quantitative studies of plant community dynamics.Only by considering possible alternative models can we identify the forces driving community assembly and change,and improve our ability to predict the behavior of plant communities.展开更多
文摘Littorina fabalis is an intertidal snail commonly living on the brown algae Fucus vesiculosus and showing frequent shell-color polymorphisms in the wild. The evolutionary mechanism underlying this polymorphism is currently unknown. Shell color variation was studied in mated and non-mated specimens of this species from different microareas in one locality from NW Spain, in order to estimate sexual selection and assortative mating that may (still) be operating in this population. The analyses across microareas allowed us to investigate frequency-dependent selection and assortative mating components, mechanisms that could maintain the polymorphism. The presence of shell scars caused by crab attacks, an environmental variable not related with sexual selection or assortative mating, was used as experimental control. This study provides new evidence of significant disas- sortative mating and some degree of sexual selection against some shell colors, supporting the results found 21 years ago in a similar study, i.e. in the same species and locality. The similarity of these estimates during the studied period suggests that this experimental approach is consistent and valid to be extended to other populations and organisms. In addition, sexual selection and assortative mating estimates did not change across microareas differing in shell color frequencies, suggesting than the polymor- phism can not be maintained by a frequency-dependent (sexual selection-based) mechanism. Our main hypothesis is that negative assortative mating could contribute to the maintenance of the polymorphism, perhaps by males showing distinct female color preferences when searching for mates [Current Zoology 58 (3): 463-474, 2012].
文摘Aims The limitations of classical Lotka–Volterra models for analyzing and interpreting competitive interactions among plant species have become increasingly clear in recent years.Three of the problems that have been identified are(i)the absence of frequency-dependence,which is important for long-term coexistence of species,(ii)the need to take unmeasured(often unmeasurable)variables influencing individual performance into account(e.g.spatial variation in soil nutrients or pathogens)and(iii)the need to separate measurement error from biological variation.Methods We modified the classical Lotka–Volterra competition models to address these limitations.We fitted eight alternative models to pin-point cover data on Festuca ovina and Agrostis capillaris over 3 years in an herbaceous plant community in Denmark.A Bayesian modeling framework was used to ascertain whether the model amendments improve the performance of the models and increase their ability to predict community dynamics and to test hypotheses.Important Findings Inclusion of frequency-dependence and measurement error,but not unmeasured variables,improved model performance greatly.Our results emphasize the importance of comparing alternative models in quantitative studies of plant community dynamics.Only by considering possible alternative models can we identify the forces driving community assembly and change,and improve our ability to predict the behavior of plant communities.