This paper proposes a simple method to enlarge the estimation range of conventional carrier frequency offset (CFO) estimation methods based on correlations among the identical parts of the preamble. A novel preamble i...This paper proposes a simple method to enlarge the estimation range of conventional carrier frequency offset (CFO) estimation methods based on correlations among the identical parts of the preamble. A novel preamble is designed, which is composed of one regular OFDM training block with even numbers of identical parts and one irregular OFDM training block with odd numbers of identical parts. The initial estimates obtained over the two training blocks are next exploited to jointly estimate the CFO. By elaborately selecting the numbers of identical parts for the two training blocks, the proposed CFO estimator can estimate frequency offset over tens of the subcarrier spacing. Simulation results showed that the proposed CFO estimator satisfies the estimate range requirement for the practical OFDM systems, while achieving a very good estimate performance.展开更多
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2003AA12331007) and the National NaturalScience Foundation of China (No. 60572157)
文摘This paper proposes a simple method to enlarge the estimation range of conventional carrier frequency offset (CFO) estimation methods based on correlations among the identical parts of the preamble. A novel preamble is designed, which is composed of one regular OFDM training block with even numbers of identical parts and one irregular OFDM training block with odd numbers of identical parts. The initial estimates obtained over the two training blocks are next exploited to jointly estimate the CFO. By elaborately selecting the numbers of identical parts for the two training blocks, the proposed CFO estimator can estimate frequency offset over tens of the subcarrier spacing. Simulation results showed that the proposed CFO estimator satisfies the estimate range requirement for the practical OFDM systems, while achieving a very good estimate performance.