期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
2D声波频率域数值模拟中几种有限差分方法的对比分析 被引量:3
1
作者 马晓娜 李志远 +2 位作者 谷丙洛 柯沛 梁光河 《地球物理学进展》 CSCD 北大核心 2015年第2期878-888,共11页
频率域数值模拟是频率域全波形反演的基础,在地震波场数值模拟中占有重要地位.相对于时间域数值模拟,频率域数值模拟具有两个明显的优势:没有时间累计误差,适合于并行计算.然而,严重的数值频散和巨大的内存损耗是阻碍其应用的两大瓶颈.... 频率域数值模拟是频率域全波形反演的基础,在地震波场数值模拟中占有重要地位.相对于时间域数值模拟,频率域数值模拟具有两个明显的优势:没有时间累计误差,适合于并行计算.然而,严重的数值频散和巨大的内存损耗是阻碍其应用的两大瓶颈.为解决这两个问题,基于有限差分方法,学者提出了多种差分格式,如优化9点、15点、17点以及25点差分格式.本文从频散关系、计算效率和存储量三个方面,对比、分析了以上四种差分方法.基于2D声波方程,通过在均匀模型、层状模型以及Marmousi模型上的应用效果,对每种方法的优缺点进行了总结,为高精度数值模拟和声波频率域全波形反演提供方法选择上的参考. 展开更多
关键词 频率域数值模拟 有限差分 优化差分格式
原文传递
正则化预处理迭代算法在频率域声波模拟中的应用 被引量:1
2
作者 司洁戈 李小凡 +4 位作者 张欢 李冰非 马晓娜 鹿璐 陈世仲 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2019年第5期1824-1834,共11页
高精度及高效频率域声波数值模拟的关键在于高效求解声波方程经离散化后得到的大型稀疏线性方程组.该方程组系数矩阵具有很强的稀疏性,非对称性和非正定性等特征,常用的迭代算法难以准确、高效地求解.为了改善数值模拟迭代算法的收敛性... 高精度及高效频率域声波数值模拟的关键在于高效求解声波方程经离散化后得到的大型稀疏线性方程组.该方程组系数矩阵具有很强的稀疏性,非对称性和非正定性等特征,常用的迭代算法难以准确、高效地求解.为了改善数值模拟迭代算法的收敛性与稳定性,在算法基础上添加预条件算子是求解该类方程的常用方案.本文基于以上思路,引入正则化技术来构造合适的预条件算子,提出正则化预条件迭代算法,以加速求解方程组.通过包含有均匀介质和高非均匀度介质(Marmousi)模型的数值模拟实验结果表明:与单独使用迭代算法相比,本文提出的正则化预条件迭代算法在计算量方面仅多了一次矩阵-矢量相乘,内存消耗未增加;同时,基于该算法的数值模拟结果能够满足精度要求,较单独使用迭代法能够有效改善收敛性质,加快收敛速度;而且,在二维模型算例下,与LU分解算法相比,基于该算法的内存消耗大幅下降. 展开更多
关键词 正则化预条件算子 拟牛顿迭代算法 频率声波数值模拟
下载PDF
3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method 被引量:4
3
作者 黄鑫 殷长春 +3 位作者 曹晓月 刘云鹤 张博 蔡晶 《Applied Geophysics》 SCIE CSCD 2017年第3期419-430,461,462,共14页
The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, e... The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology. 展开更多
关键词 Spectral-element method ANISOTROPY frequency-domain AEM GLL interpolation basis function forward m odeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部