The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, e...The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology.展开更多
In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbul...In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbulence models with hydraulic performance experiment, SST k-co model was confirmed to study the rational determination of sampling frequency and time better. The Fast Fourier Transform (FFT) technology was then adopted to process those fluctuating pressure signals obtained. On these bases, the characteristics of pressure fluctuations acting on the tongue were discussed. It is found that aliasing errors decrease at higher sampling frequency of 17 640 Hz, but not at a lower sampling frequency of 1 764 Hz. Correspondingly, an output frequency range ten-times wider is obtained at 17 640 Hz. Compared with 8R, when the sampling time is shorter, the amplitudes may be overvalued, and the frequencies and amplitudes of low-frequency fluctuations can not be well predicted. The frequencies at the tongue are in good agreement with the values calculated by formula and the frequency compositions less than the blade passing frequency are accurately predicted.展开更多
横向工作点是环形粒子加速器非常重要的特征参数之一,一般不随时间变化,可通过对束流逐圈位置数据做简单的谐波分析得到,但在某些特殊的物理过程中工作点会随时间变化,需要研究并优化时变工作点的算法。储存环注入后残余横向振荡阻尼衰...横向工作点是环形粒子加速器非常重要的特征参数之一,一般不随时间变化,可通过对束流逐圈位置数据做简单的谐波分析得到,但在某些特殊的物理过程中工作点会随时间变化,需要研究并优化时变工作点的算法。储存环注入后残余横向振荡阻尼衰减的过程中因Lattice的非线性效应可能会发生工作点漂移,研究时变工作点的分析算法并对上述物理过程进行分析,可以对储存环的非线性效应进行定量评估。本文首先对小波算法和基本频率的数值分析算法(Numerical Analysis of Fundamental Frequencies,NAFF)在时变工作点分析的适用性进行了分析,并比较了两种算法的性能。结果表明:两种算法均可以实现时变工作点的动态分析,但小波方法性能更好。然后采用小波方法对上海光源储存环注入期间工作点的飘移进行了定量分析,评估了上海光源不同运行周期非线性的强度变化。结果显示:其工作点的飘移在不同时期有不同的表现,总体上非线性效应有增强的趋势。展开更多
Two methods of calculating the parameters and characterizing the degree of pulse electrical disturbances influence on digital devices functioning, both analytical and numerical, are considered here. The analytical met...Two methods of calculating the parameters and characterizing the degree of pulse electrical disturbances influence on digital devices functioning, both analytical and numerical, are considered here. The analytical method permits one to assess the error occurrence probability in transmitting the data packets considering the dependence on the signal pulses energies-to-pulse disturbances energies ratio and the disturbances repetition frequency-to-data transmission rate ratio and also the dependence on the bits quantity in the packet. The numerical method allows one to assess the specific effect of the repetitive pulse disturbance influence on the digital devices functioning (the number of errors in transmitted data packets, transmission rate, etc.) depending on such factors as the repetition frequency, the disturbance waveform and duration, the mode of data coding, etc..展开更多
A novel periodic mount was presented. A theoretical model was developed to describe the dynamics of wave propagation in the novel periodic mount. The model was derived using Hamilton's energy conservation principl...A novel periodic mount was presented. A theoretical model was developed to describe the dynamics of wave propagation in the novel periodic mount. The model was derived using Hamilton's energy conservation principle. The characteristics of wave propagation in unit cell were analyzed by transfer matrix formulation. Numerical examples were given to illustrate the effectiveness of the periodic mount. The experiments were carried out to identify the predications of the theoretical model. The obtained results show that the experimental results coincide with the prediction of theoretical model. No pass bands appear in the overall frequency range measured when waves propagate in the longitude direction of the periodic mount. These dramatic results demonstrate its potential as an excellent mount in attenuating and isolating vibration transmission.展开更多
In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor an...In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor and inductor in parallel for reduction of numerical oscillations. It is simulated the numerical routine with and without the effectof frequency in the longitudinal parameters. Initially, it is used to state variables and 7t circuits representing the transmission line composing a linear system which is solved by numerical routines based on the trapezoidal rule. The effect of frequency on the line is synthesized by resistors and inductors in parallel and this representation is analyzed in details. It is described as transmission lines and the frequency influence in these lines through the state variables.展开更多
Using frequency and time domain analysis, the authors analyzed the hydrodynamics and motion behavior of a Truss Spar platform at a water depth of 1500 m in the Liwan 3-1 area of the South China Sea. Firstly, the seake...Using frequency and time domain analysis, the authors analyzed the hydrodynamics and motion behavior of a Truss Spar platform at a water depth of 1500 m in the Liwan 3-1 area of the South China Sea. Firstly, the seakeeping ability is acquired in the frequency domain by calculating the hull's hydrodynamics and comparing with a semi-submersible platform. The random wave analysis for 100-year, 10-year and 1-year return periods in Liwan 3-1 distinctly shows lower heave but larger surge and pitch re-sponses of the Truss Spar than those of a semi-submersible. Secondly, 3-hour motions of the Truss Spar are predicted and compared in the time domain under 100-year return period conditions in Liwan 3-1 and the Gulf of Mexico. Thirdly, the hull/mooring line cou-pled and uncoupled models are compared. Finally, the responses of the Truss Spar under 10-year and 1-year return period conditions are assessed. The results reveal that the mooring line damping reflected by the coupled model distinctly decreases the low frequency motion. The maximum heave response for 100-year return period waves is 1.23m and below 0.1m for the case of 1-year return period.展开更多
The paper presents process of creating a centrifugal pump rotor model in CAD environment. Modeling of a virtual object was divided into two stages, modeling of the efficient pump and the simulated failure of one of th...The paper presents process of creating a centrifugal pump rotor model in CAD environment. Modeling of a virtual object was divided into two stages, modeling of the efficient pump and the simulated failure of one of the impeller's blades. Comparison of the results of the resonance frequency obtained from the model analysis, with those obtained from measurements on the actual object was shown. Measurements and simulations were conducted on the pump before and after the simulated damaged of the rotor. In order to verify the model the rotor of pump was weighted and compared with the masses of the respective components obtained from the virtual object. In the second stage genuine rotor was subjected to the experimental modal analysis.展开更多
The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, ...The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, which need at most 7 points and are sampled at a sample frequency of 25600 Hz, and computation sequences, using employed a formulation proposed in this paper, the frequencies of each component of the signal are all estimated at an accuracy of 0.001% over 1 Hz to 800 kHz with the amplitudes of each component of the signal varying from 1 V to 200 V and the phase angle of each component of the signal varying from 0° to 360°. The proposed algorithm needs at most a half cycle for the frequencies of each component of the signal under noisy or non-noisy conditions. A testing example is given to illustrate the proposed algorithm in Matlab environment.展开更多
Orthogonal Frequency Division Multiplexing(OFDM) is an effective technique to deal with a frequency selective channel since it can convert the channel into some flat fading subchannels.However,very different output SN...Orthogonal Frequency Division Multiplexing(OFDM) is an effective technique to deal with a frequency selective channel since it can convert the channel into some flat fading subchannels.However,very different output SNR values of the subchannels will lead to poor bit error performance when a linear equalizer and Equal Bit Allocation(EBA) are adopted in OFDM systems.So,we proposed three novel nonlinear Joint Transceiver(JT) schemes based on Zero-Forcing(ZF) criterion and Minimum Mean Square Error(MMSE) criterion respectively,which can transform all subchannels of an OFDM system into subchannels with identical channel gain.Thus,EBA is equivalent to the Optimum Bit Allocation(OBA) for these subchannels.Numerical analysis helps us to obtain the theoretical approximate BER values of the JT scheme.Simulation results verify the numerical analysis and confirm that the performance of our proposed JT scheme greatly outperforms the traditional linear equalizer with EBA at moderate and high SNR values.展开更多
In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published w...In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published work. All parameters of these circuits can be interpreted as the results of open and short-circuit tests on the transformer. Based on this consideration, numerical procedures are then proposed to derive frequency-dependent lumped parameters from FE simulations. By using an adequate formulation, parameters are directly obtained from the FE model degrees of freedom, without performing any volume integration in post-processing, which can be source of numerical errors. In this contribution, attention is paid on the modeling of magnetic coupling using inductances, and dissipative effects (winding and core losses) using resistances. The impact of conductor eddy currents on the circuit parameters is moreover studied in details. Instead of an analysis of the impact conductor eddy currents may have on the circuit parameters is moreover carried through.展开更多
A 2.5-dimensional method in frequency wave-number domain is developed to investigate the mode waves in a deviated borehole penetrating a transversely isotropic formation. The phase velocity dispersion characteristics ...A 2.5-dimensional method in frequency wave-number domain is developed to investigate the mode waves in a deviated borehole penetrating a transversely isotropic formation. The phase velocity dispersion characteristics of the fast and slow flexural mode waves excited by a dipole source are computed accurately at various deviation angles for both hard and soft formations. The sensitivities of the flexural mode waves to all elastic constants in a transversely isotropic formation are calculated. Numerical results show that, for a soft formation, the fast flexural mode wave is dominated by c66 at high deviation angles and low frequencies, while the slow flexural mode wave is dominated by c44 at the same conditions. Waveforms in time domain are also presented to support the conclusions.展开更多
Wave energy is one of the renewable energy sources with the highest potential.Several pilot plants have been built based on the principle of the Oscillating Water Column(OWC).Among the different solutions that have be...Wave energy is one of the renewable energy sources with the highest potential.Several pilot plants have been built based on the principle of the Oscillating Water Column(OWC).Among the different solutions that have been suggested,the Wells turbine has gained particular attention due to its simplicity and reliability.The majority of available studies concentrate on the steady operation of the Wells turbine,while only few analyze its performance under an unsteady and bi-directional air flow,as determined by the presence of the OWC system.In this work,experimental and numerical performance of a high-solidity Wells turbine with NACA0015 profiles have been compared,at different non-dimensional piston frequencies.The numerical simulations have been conducted using commercial CFD software and focus on unsteady predictions,with particular attention to the behavior of the flow upstream and downstream of the rotor,flow hysteresis between acceleration and deceleration phases and differences between intake and exhaust strokes due to the non-symmetrical configuration of the machine.展开更多
In order to achieve higher spectral efficiency, mode division multiplexing (MDM) in few-mode fibers is a new research area. The idea faces lots of technical issues including intermodal delay and mode coupling which li...In order to achieve higher spectral efficiency, mode division multiplexing (MDM) in few-mode fibers is a new research area. The idea faces lots of technical issues including intermodal delay and mode coupling which limit the achievable length of the system. This paper is designated to complete the analysis of intermodal delay in step-index few-mode fibers. We analyze numerically all the parameters of fiber, which could impact intermodal delay in few-mode fibers and identify the conditions which can increase the number of multiplex modes without significant increase in maximum intermodal delay.展开更多
A generalization of the Kuramoto model in which oscillators are coupled to the mean field with random signs is investigated in this work. We focus on a situation in which the natural frequencies of oscillators follow ...A generalization of the Kuramoto model in which oscillators are coupled to the mean field with random signs is investigated in this work. We focus on a situation in which the natural frequencies of oscillators follow a uniform probability density. By numerically simulating the model, we find that the model supports a modulated travelling wave state except for already reported 7r state and travelling wave state in the one with natural frequencies following Lorenztian probability density or a delta function. The dependence of the observed dynamics on the parameters of the model is explored and we find that the onset of synchronization in the model displays a non-monotonic dependence on both positive and negative coupling strength.展开更多
In order to clarify the influence of a diffuser on the charactersfics of a forward curved fan, the influence of the bare ratio and the outlet angle on the characteristics of the fan were measured through an experiment...In order to clarify the influence of a diffuser on the charactersfics of a forward curved fan, the influence of the bare ratio and the outlet angle on the characteristics of the fan were measured through an experiment performed with an actual fan as well as through a numerical simulation, respectively. The mechanism of the discrete fre- quency noise generated by the separated flow of the diffuser was analyzed. The optimized bare ratio was ap- proximately 17%. The flow separated inside of the diffuser generated discrete frequency noise owing to the inter- action between the reversed flow from the diffuser and the impeller rotating at the blade passing frequency. The diffuser outlet angle influenced the pressure ratio more than that by the bare ratio. Furthermore, it was confirmed that restraining the separation in the diffuser effectively decreases the fan noise.展开更多
基金financially supported by the Key Program of National Natural Science Foundation of China(No.41530320)China Natural Science Foundation for Young Scientists(No.41404093)+1 种基金Key National Research Project of China(Nos2016YFC0303100 and 2017YFC0601900)China Natural Science Foundation(No.41774125)
文摘The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology.
基金Project supported by the Priority Academic Development Program of Jiangsu Higher Education Institutions, ChinaProject(CXZZ12_0680) supported by Postgraduate Innovation Foundation of Jiangsu Province, ChinaProject(12JDG082) supported by the Advanced Talent Foundation of Jiangsu University, China
文摘In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbulence models with hydraulic performance experiment, SST k-co model was confirmed to study the rational determination of sampling frequency and time better. The Fast Fourier Transform (FFT) technology was then adopted to process those fluctuating pressure signals obtained. On these bases, the characteristics of pressure fluctuations acting on the tongue were discussed. It is found that aliasing errors decrease at higher sampling frequency of 17 640 Hz, but not at a lower sampling frequency of 1 764 Hz. Correspondingly, an output frequency range ten-times wider is obtained at 17 640 Hz. Compared with 8R, when the sampling time is shorter, the amplitudes may be overvalued, and the frequencies and amplitudes of low-frequency fluctuations can not be well predicted. The frequencies at the tongue are in good agreement with the values calculated by formula and the frequency compositions less than the blade passing frequency are accurately predicted.
文摘横向工作点是环形粒子加速器非常重要的特征参数之一,一般不随时间变化,可通过对束流逐圈位置数据做简单的谐波分析得到,但在某些特殊的物理过程中工作点会随时间变化,需要研究并优化时变工作点的算法。储存环注入后残余横向振荡阻尼衰减的过程中因Lattice的非线性效应可能会发生工作点漂移,研究时变工作点的分析算法并对上述物理过程进行分析,可以对储存环的非线性效应进行定量评估。本文首先对小波算法和基本频率的数值分析算法(Numerical Analysis of Fundamental Frequencies,NAFF)在时变工作点分析的适用性进行了分析,并比较了两种算法的性能。结果表明:两种算法均可以实现时变工作点的动态分析,但小波方法性能更好。然后采用小波方法对上海光源储存环注入期间工作点的飘移进行了定量分析,评估了上海光源不同运行周期非线性的强度变化。结果显示:其工作点的飘移在不同时期有不同的表现,总体上非线性效应有增强的趋势。
文摘Two methods of calculating the parameters and characterizing the degree of pulse electrical disturbances influence on digital devices functioning, both analytical and numerical, are considered here. The analytical method permits one to assess the error occurrence probability in transmitting the data packets considering the dependence on the signal pulses energies-to-pulse disturbances energies ratio and the disturbances repetition frequency-to-data transmission rate ratio and also the dependence on the bits quantity in the packet. The numerical method allows one to assess the specific effect of the repetitive pulse disturbance influence on the digital devices functioning (the number of errors in transmitted data packets, transmission rate, etc.) depending on such factors as the repetition frequency, the disturbance waveform and duration, the mode of data coding, etc..
基金Project(50775225) supported by the National Natural Science Foundation of China
文摘A novel periodic mount was presented. A theoretical model was developed to describe the dynamics of wave propagation in the novel periodic mount. The model was derived using Hamilton's energy conservation principle. The characteristics of wave propagation in unit cell were analyzed by transfer matrix formulation. Numerical examples were given to illustrate the effectiveness of the periodic mount. The experiments were carried out to identify the predications of the theoretical model. The obtained results show that the experimental results coincide with the prediction of theoretical model. No pass bands appear in the overall frequency range measured when waves propagate in the longitude direction of the periodic mount. These dramatic results demonstrate its potential as an excellent mount in attenuating and isolating vibration transmission.
文摘In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor and inductor in parallel for reduction of numerical oscillations. It is simulated the numerical routine with and without the effectof frequency in the longitudinal parameters. Initially, it is used to state variables and 7t circuits representing the transmission line composing a linear system which is solved by numerical routines based on the trapezoidal rule. The effect of frequency on the line is synthesized by resistors and inductors in parallel and this representation is analyzed in details. It is described as transmission lines and the frequency influence in these lines through the state variables.
基金the supports from National Sci-Tech Major Special Item (No. 2008ZX05056-03)
文摘Using frequency and time domain analysis, the authors analyzed the hydrodynamics and motion behavior of a Truss Spar platform at a water depth of 1500 m in the Liwan 3-1 area of the South China Sea. Firstly, the seakeeping ability is acquired in the frequency domain by calculating the hull's hydrodynamics and comparing with a semi-submersible platform. The random wave analysis for 100-year, 10-year and 1-year return periods in Liwan 3-1 distinctly shows lower heave but larger surge and pitch re-sponses of the Truss Spar than those of a semi-submersible. Secondly, 3-hour motions of the Truss Spar are predicted and compared in the time domain under 100-year return period conditions in Liwan 3-1 and the Gulf of Mexico. Thirdly, the hull/mooring line cou-pled and uncoupled models are compared. Finally, the responses of the Truss Spar under 10-year and 1-year return period conditions are assessed. The results reveal that the mooring line damping reflected by the coupled model distinctly decreases the low frequency motion. The maximum heave response for 100-year return period waves is 1.23m and below 0.1m for the case of 1-year return period.
文摘The paper presents process of creating a centrifugal pump rotor model in CAD environment. Modeling of a virtual object was divided into two stages, modeling of the efficient pump and the simulated failure of one of the impeller's blades. Comparison of the results of the resonance frequency obtained from the model analysis, with those obtained from measurements on the actual object was shown. Measurements and simulations were conducted on the pump before and after the simulated damaged of the rotor. In order to verify the model the rotor of pump was weighted and compared with the masses of the respective components obtained from the virtual object. In the second stage genuine rotor was subjected to the experimental modal analysis.
文摘The high-accuracy, wide-range frequency estimation algorithm for multi-component signals presented in this paper, is based on a numerical differentiation and central Lagrange interpolation. With the sample sequences, which need at most 7 points and are sampled at a sample frequency of 25600 Hz, and computation sequences, using employed a formulation proposed in this paper, the frequencies of each component of the signal are all estimated at an accuracy of 0.001% over 1 Hz to 800 kHz with the amplitudes of each component of the signal varying from 1 V to 200 V and the phase angle of each component of the signal varying from 0° to 360°. The proposed algorithm needs at most a half cycle for the frequencies of each component of the signal under noisy or non-noisy conditions. A testing example is given to illustrate the proposed algorithm in Matlab environment.
基金the National Natural Science Foundation of China for Distinguished Young Scholars,the National Key Basic Research Program of China (973 program),the National Natural Science Foundation of China,the National Science and Technology Major Project,the Special Research Fund of State Key Laboratory,the 111 Project
文摘Orthogonal Frequency Division Multiplexing(OFDM) is an effective technique to deal with a frequency selective channel since it can convert the channel into some flat fading subchannels.However,very different output SNR values of the subchannels will lead to poor bit error performance when a linear equalizer and Equal Bit Allocation(EBA) are adopted in OFDM systems.So,we proposed three novel nonlinear Joint Transceiver(JT) schemes based on Zero-Forcing(ZF) criterion and Minimum Mean Square Error(MMSE) criterion respectively,which can transform all subchannels of an OFDM system into subchannels with identical channel gain.Thus,EBA is equivalent to the Optimum Bit Allocation(OBA) for these subchannels.Numerical analysis helps us to obtain the theoretical approximate BER values of the JT scheme.Simulation results verify the numerical analysis and confirm that the performance of our proposed JT scheme greatly outperforms the traditional linear equalizer with EBA at moderate and high SNR values.
文摘In this paper, equivalent circuits for high frequency multi-winding magnetic components are derived from finite element (FE) computations. Lumped parameter models are first presented, based on previously published work. All parameters of these circuits can be interpreted as the results of open and short-circuit tests on the transformer. Based on this consideration, numerical procedures are then proposed to derive frequency-dependent lumped parameters from FE simulations. By using an adequate formulation, parameters are directly obtained from the FE model degrees of freedom, without performing any volume integration in post-processing, which can be source of numerical errors. In this contribution, attention is paid on the modeling of magnetic coupling using inductances, and dissipative effects (winding and core losses) using resistances. The impact of conductor eddy currents on the circuit parameters is moreover studied in details. Instead of an analysis of the impact conductor eddy currents may have on the circuit parameters is moreover carried through.
基金supported by the National Natural Science Foundation of China(Grant No.11134011)the National R&D Projects for Key Scientific Instruments(Grant No.ZDYZ2012-1-07)the"12th Five-Year Plan"Period for Informatization Project in Supercomputing Key Demonstration,Chinese Academy of Sciences(Grant No.XXH12503-02-02-2(07))
文摘A 2.5-dimensional method in frequency wave-number domain is developed to investigate the mode waves in a deviated borehole penetrating a transversely isotropic formation. The phase velocity dispersion characteristics of the fast and slow flexural mode waves excited by a dipole source are computed accurately at various deviation angles for both hard and soft formations. The sensitivities of the flexural mode waves to all elastic constants in a transversely isotropic formation are calculated. Numerical results show that, for a soft formation, the fast flexural mode wave is dominated by c66 at high deviation angles and low frequencies, while the slow flexural mode wave is dominated by c44 at the same conditions. Waveforms in time domain are also presented to support the conclusions.
文摘Wave energy is one of the renewable energy sources with the highest potential.Several pilot plants have been built based on the principle of the Oscillating Water Column(OWC).Among the different solutions that have been suggested,the Wells turbine has gained particular attention due to its simplicity and reliability.The majority of available studies concentrate on the steady operation of the Wells turbine,while only few analyze its performance under an unsteady and bi-directional air flow,as determined by the presence of the OWC system.In this work,experimental and numerical performance of a high-solidity Wells turbine with NACA0015 profiles have been compared,at different non-dimensional piston frequencies.The numerical simulations have been conducted using commercial CFD software and focus on unsteady predictions,with particular attention to the behavior of the flow upstream and downstream of the rotor,flow hysteresis between acceleration and deceleration phases and differences between intake and exhaust strokes due to the non-symmetrical configuration of the machine.
基金supported by the National Basic Research Program of China (No.2010CB328300)the National Natural Science Foundation of China (Nos.61077050, 61077014 and 60932004)+1 种基金the BUPT Young Foundation (No.2009CZ07), Fundamental Research Funds for Central Universitiesthe Open Foundation of State Key Laboratory of Optical Communication Technologies and Networks (WRI) (No.2010OCTN-02)
文摘In order to achieve higher spectral efficiency, mode division multiplexing (MDM) in few-mode fibers is a new research area. The idea faces lots of technical issues including intermodal delay and mode coupling which limit the achievable length of the system. This paper is designated to complete the analysis of intermodal delay in step-index few-mode fibers. We analyze numerically all the parameters of fiber, which could impact intermodal delay in few-mode fibers and identify the conditions which can increase the number of multiplex modes without significant increase in maximum intermodal delay.
基金Supported by National Natural Science Foundation of China under Grant No. 11247279
文摘A generalization of the Kuramoto model in which oscillators are coupled to the mean field with random signs is investigated in this work. We focus on a situation in which the natural frequencies of oscillators follow a uniform probability density. By numerically simulating the model, we find that the model supports a modulated travelling wave state except for already reported 7r state and travelling wave state in the one with natural frequencies following Lorenztian probability density or a delta function. The dependence of the observed dynamics on the parameters of the model is explored and we find that the onset of synchronization in the model displays a non-monotonic dependence on both positive and negative coupling strength.
文摘In order to clarify the influence of a diffuser on the charactersfics of a forward curved fan, the influence of the bare ratio and the outlet angle on the characteristics of the fan were measured through an experiment performed with an actual fan as well as through a numerical simulation, respectively. The mechanism of the discrete fre- quency noise generated by the separated flow of the diffuser was analyzed. The optimized bare ratio was ap- proximately 17%. The flow separated inside of the diffuser generated discrete frequency noise owing to the inter- action between the reversed flow from the diffuser and the impeller rotating at the blade passing frequency. The diffuser outlet angle influenced the pressure ratio more than that by the bare ratio. Furthermore, it was confirmed that restraining the separation in the diffuser effectively decreases the fan noise.