In studies of auditory perception, a dichotomy between envelope and temporal fine structure(TFS) has been emphasized. It has been shown that frequency-following responses(FFRs) in the rat inferior colliculus can be di...In studies of auditory perception, a dichotomy between envelope and temporal fine structure(TFS) has been emphasized. It has been shown that frequency-following responses(FFRs) in the rat inferior colliculus can be divided into the envelope component(FFREnv)and the temporal fine structure component(FFRTFS). However, the existing FFR models cannot successfully separate FFREnv and FFRTFS. This study was to develop a new FFR model to effectively distinguish FFREnv from FFRTFS by both combining the advantages of the two existing FFR models and simultaneously adding cellular properties of inferior colliculus neurons. To evaluate the validity of the present model, correlations between simulated FFRs and experimental data from the rat inferior colliculus were calculated. Different model parameters were tested, FFRs were calculated, and the parameters with highest prediction were chosen to establish an ideal FFR model. The results indicate that the new FFR model can provide reliable predictions for experimentally obtained FFREnv and FFRTFS.展开更多
The flow induced by plasma synthetic jet actuator was simulated through solving the Reynolds-averaged Navier-Stokes equations augmented by body force phenomenological plasma model.The effect of actuation frequency on ...The flow induced by plasma synthetic jet actuator was simulated through solving the Reynolds-averaged Navier-Stokes equations augmented by body force phenomenological plasma model.The effect of actuation frequency on the plasma synthetic jet was examined by case study.The numerical results present that with the actuation frequency increasing,the stream-wise distance of the adjacent vortex pairs induced by the actuator decreases monotonically,which is the same as the situation of the velocity fluctuations field caused by the vortex pairs.When the actuation frequency is 60 Hz,the vortex pairs formed during the adjacent actuation periods merge together quickly,and the flow structure in the downstream region is more close to that of the steady case.The actuation frequency has no visible influence on the time-averaged flow field of plasma synthetic jet.However,when the actuation frequency is relatively low(f<40 Hz),the momentum flux close to the actuator increases with the actuation frequency increasing,which is contrary to the situation in the far field from the wall.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31470987)the National Basic Research Development Program of China(Grant No.2015CB351800)“985”grants from Peking University for Physiological Psychology and China Postdoctoral Science Foundation(Grant No.2016M601066)
文摘In studies of auditory perception, a dichotomy between envelope and temporal fine structure(TFS) has been emphasized. It has been shown that frequency-following responses(FFRs) in the rat inferior colliculus can be divided into the envelope component(FFREnv)and the temporal fine structure component(FFRTFS). However, the existing FFR models cannot successfully separate FFREnv and FFRTFS. This study was to develop a new FFR model to effectively distinguish FFREnv from FFRTFS by both combining the advantages of the two existing FFR models and simultaneously adding cellular properties of inferior colliculus neurons. To evaluate the validity of the present model, correlations between simulated FFRs and experimental data from the rat inferior colliculus were calculated. Different model parameters were tested, FFRs were calculated, and the parameters with highest prediction were chosen to establish an ideal FFR model. The results indicate that the new FFR model can provide reliable predictions for experimentally obtained FFREnv and FFRTFS.
基金supported by the National Natural Science Foundation of China (Grant No. 10872021)the Fundamental Research Funds for the Central Universities (Grant No. YWF-10-01-A05)
文摘The flow induced by plasma synthetic jet actuator was simulated through solving the Reynolds-averaged Navier-Stokes equations augmented by body force phenomenological plasma model.The effect of actuation frequency on the plasma synthetic jet was examined by case study.The numerical results present that with the actuation frequency increasing,the stream-wise distance of the adjacent vortex pairs induced by the actuator decreases monotonically,which is the same as the situation of the velocity fluctuations field caused by the vortex pairs.When the actuation frequency is 60 Hz,the vortex pairs formed during the adjacent actuation periods merge together quickly,and the flow structure in the downstream region is more close to that of the steady case.The actuation frequency has no visible influence on the time-averaged flow field of plasma synthetic jet.However,when the actuation frequency is relatively low(f<40 Hz),the momentum flux close to the actuator increases with the actuation frequency increasing,which is contrary to the situation in the far field from the wall.