期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的新型电力系统频率特性预测方法
1
作者
陆文安
朱清晓
+2 位作者
李兆伟
刘辉
余一平
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2024年第10期1500-1512,共13页
为了解决利用传统频率分析方法分析新能源高占比电网频率时存在计算量大、建模困难、计算速度与计算精度矛盾突出等问题,提出一种基于卷积神经网络(CNN)的新型电力系统频率特性预测方法.首先,利用一维CNN对新能源高占比电力系统在功率...
为了解决利用传统频率分析方法分析新能源高占比电网频率时存在计算量大、建模困难、计算速度与计算精度矛盾突出等问题,提出一种基于卷积神经网络(CNN)的新型电力系统频率特性预测方法.首先,利用一维CNN对新能源高占比电力系统在功率扰动下的主要频率指标进行预测,包括初始频率变化率、频率极值以及频率稳态值;并通过设置合理的输入特征以及对神经网络各参数的优化调整,提高了预测精度.在此基础上,进一步考虑扰动位置以及扰动类型的影响,利用数据降维的方法建立包含扰动信息的电力系统特征数据集,借鉴三原色通道原理构建输入特征,并利用扩展的二维CNN预测频率安全指标提高CNN在高占比新能源电网频率分析中的适应性.最后,在改进的BPA 10机39节点模型中进行算例验证,并与循环神经网络预测结果进行对比,结果表明所提方法具有较高的准确度和适应性.
展开更多
关键词
新型电力系统
卷积神经网络
频率
安全指标
扰动信息
频率特性预测
下载PDF
职称材料
题名
基于卷积神经网络的新型电力系统频率特性预测方法
1
作者
陆文安
朱清晓
李兆伟
刘辉
余一平
机构
河海大学能源与电气学院
南瑞集团(国网电力科学研究院)有限公司
国网安徽省电力有限公司
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2024年第10期1500-1512,共13页
基金
国家自然科学基金(52077058),国网安徽电力有限公司科技项目(B31200220005)资助项目。
文摘
为了解决利用传统频率分析方法分析新能源高占比电网频率时存在计算量大、建模困难、计算速度与计算精度矛盾突出等问题,提出一种基于卷积神经网络(CNN)的新型电力系统频率特性预测方法.首先,利用一维CNN对新能源高占比电力系统在功率扰动下的主要频率指标进行预测,包括初始频率变化率、频率极值以及频率稳态值;并通过设置合理的输入特征以及对神经网络各参数的优化调整,提高了预测精度.在此基础上,进一步考虑扰动位置以及扰动类型的影响,利用数据降维的方法建立包含扰动信息的电力系统特征数据集,借鉴三原色通道原理构建输入特征,并利用扩展的二维CNN预测频率安全指标提高CNN在高占比新能源电网频率分析中的适应性.最后,在改进的BPA 10机39节点模型中进行算例验证,并与循环神经网络预测结果进行对比,结果表明所提方法具有较高的准确度和适应性.
关键词
新型电力系统
卷积神经网络
频率
安全指标
扰动信息
频率特性预测
Keywords
new power system
convolutional neural network(CNN)
frequency safety index
disturbance information
frequency characteristic prediction
分类号
TM716 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的新型电力系统频率特性预测方法
陆文安
朱清晓
李兆伟
刘辉
余一平
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部