A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler...A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.展开更多
In cognitive radio network(CRN), a secondary user(SU) may utilize the spectrum resource of the primary user(PU) and avoid causing harmful interference to the primary network(PN) via spectrum sensing. In the traditiona...In cognitive radio network(CRN), a secondary user(SU) may utilize the spectrum resource of the primary user(PU) and avoid causing harmful interference to the primary network(PN) via spectrum sensing. In the traditional time spectrum sensing, the SU cannot detect the PU's presence during its transmission, thus increasing interference to the PN. In this work, a novel weighed cooperative bandwidth spectrum sensing method is proposed, which allows multiple SUs to use part of the bandwidth to perform cooperative spectrum sensing throughout the whole frame in order to detect the PU's reappearance in time. The SU's spectrum efficiency is maximized by jointly optimizing sensing bandwidth proportion, number of cooperative SUs and detection probability, subject to the constraints on the SU's interference and the false alarm probability. Simulation results show significant decrease on the interference and improvement on the spectrum efficiency using the proposed weighed cooperative bandwidth spectrum sensing method.展开更多
Motivated by the recent work that the periodicity of a black hole is responsible for the area spectrum,we exclusively utilize the period of motion of an outgoing wave,which is shown to be related to the vibrational fr...Motivated by the recent work that the periodicity of a black hole is responsible for the area spectrum,we exclusively utilize the period of motion of an outgoing wave,which is shown to be related to the vibrational frequency of the perturbed black hole,to study area spectra of a non-rotating BTZ black hole and a rotating BTZ black hole.It is found that the area spectra and entropy spectra for both space times are equally spaced.In addition,we find that though the entropy spectra of the 3-dimensional BTZ black holes take the same form as those of the 4-dimensional black holes,the area spectra depend on the dimension of space times.Our result confirms that the entropy spectrum of a black hole is more fundamental than the area spectrum.展开更多
基金Supported by the National Natural Science Foundation of China(51406031)
文摘A new method of nonlinear analysis is established by combining phase space reconstruction and data reduction sub-frequency band wavelet. This method is applied to two types of chaotic dynamic systems(Lorenz and Rssler) to examine the anti-noise ability for complex systems. Results show that the nonlinear dynamic system analysis method resists noise and reveals the internal dynamics of a weak signal from noise pollution. On this basis, the vertical upward gas–liquid two-phase flow in a 2 mm × 0.81 mm small rectangular channel is investigated. The frequency and energy distributions of the main oscillation mode are revealed by analyzing the time–frequency spectra of the pressure signals of different flow patterns. The positive power spectral density of singular-value frequency entropy and the damping ratio are extracted to characterize the evolution of flow patterns and achieve accurate recognition of different vertical upward gas–liquid flow patterns(bubbly flow:100%, slug flow: 92%, churn flow: 96%, annular flow: 100%). The proposed analysis method will enrich the dynamics theory of multi-phase flow in small channel.
基金Project(61471194)supported by the National Natural Science Foundation of ChinaProject(BK20140828)supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(NS2015088,DUT16RC(3)045)supported by the Fundamental Research Funds for the Central Universities,China
文摘In cognitive radio network(CRN), a secondary user(SU) may utilize the spectrum resource of the primary user(PU) and avoid causing harmful interference to the primary network(PN) via spectrum sensing. In the traditional time spectrum sensing, the SU cannot detect the PU's presence during its transmission, thus increasing interference to the PN. In this work, a novel weighed cooperative bandwidth spectrum sensing method is proposed, which allows multiple SUs to use part of the bandwidth to perform cooperative spectrum sensing throughout the whole frame in order to detect the PU's reappearance in time. The SU's spectrum efficiency is maximized by jointly optimizing sensing bandwidth proportion, number of cooperative SUs and detection probability, subject to the constraints on the SU's interference and the false alarm probability. Simulation results show significant decrease on the interference and improvement on the spectrum efficiency using the proposed weighed cooperative bandwidth spectrum sensing method.
基金supported by the National Natural Science Foundation of China (Grant Nos.10773002,10875012 and 11175019)the Team Research Program of Hubei University for Nationalities (Grant No.MY2011T006)Beijing Postdoctoral Research Foundation (Grant No.71006015201201)
文摘Motivated by the recent work that the periodicity of a black hole is responsible for the area spectrum,we exclusively utilize the period of motion of an outgoing wave,which is shown to be related to the vibrational frequency of the perturbed black hole,to study area spectra of a non-rotating BTZ black hole and a rotating BTZ black hole.It is found that the area spectra and entropy spectra for both space times are equally spaced.In addition,we find that though the entropy spectra of the 3-dimensional BTZ black holes take the same form as those of the 4-dimensional black holes,the area spectra depend on the dimension of space times.Our result confirms that the entropy spectrum of a black hole is more fundamental than the area spectrum.