A programmable multi-modulus frequency divider is designed and implemented in a 0. 35μm CMOS process. The multi-modulus frequency divider is a single chip with two dividers in series,which are divided by 4 or 5 presc...A programmable multi-modulus frequency divider is designed and implemented in a 0. 35μm CMOS process. The multi-modulus frequency divider is a single chip with two dividers in series,which are divided by 4 or 5 prescaler and by 128-255 multi-modulus frequency divider. In the circuit design, power and speed trade-offs are analyzed for the prescaler, and power optimization techniques are used according to the input frequency of each divider cell for the 128-255 multimodulus frequency divider. The chip is designed with ESD protected I/O PAD. The dividers chain can work as high as 2.4GHz with a single ended input signal and beyond 2.6GHz with differential input signals. The dual-modulus prescaler consumes 11mA of current while the 128-255 multi-modulus frequency divider consumes 17mA of current with a 3.3V power supply. The core area of the die without PAD is 0.65mm × 0.3mm. This programmable multi-modulus frequency divider can be used for 2.4GHz ISM band PLL-based frequency synthesizers. To our knowledge, this is the first reported multi-modulus frequency divider with this structure in China.展开更多
An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods ...An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods of high frequency analog circuit and digital logical synthesis are adopted respectively. Using a DMP high speed, lower jitter and lower power dissipation are obtained,and output frequency of 133.0MHz of the DMP working at divide-by-8 shows an RMS jitter less than 2ps. The flexibility and reusability of the progrs, mmable divider is high;its use could be extended to many complicated frequency synthesizers. By comparison,it is a better design on performance of high-frequency circuit and good design flexibility.展开更多
A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused o...A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused on.It is fabricated in a 0.18 μm mixed-signal CMOS (complementary metal-oxide-semiconductor transistor) process.The power dissipation of VCO is low and a stable performance is gained.The measured phase noise of VCO at 2.4 GHz is less than -114.32 dBc/Hz.The structure of the DMP is optimized and a novel D-latch integrated with "OR" logic gate is used.The measured results show that the chip can work well under a 1.8 V power supply.The power dissipation of the core part in a dual modulus prescaler is only 5.76 mW.An RMS jitter of 2 ps is measured on the output signal at 118.3 MHz.It is less than 0.02% of the clock period.展开更多
To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order vel...To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.展开更多
Dual-modulus prescalers (DMP) for RF receivers are studied. An improved D-latch is proposed to increase the speed and the driving capability of the DMP. A novel D-latch architecture integrated with ‘OR' logic is p...Dual-modulus prescalers (DMP) for RF receivers are studied. An improved D-latch is proposed to increase the speed and the driving capability of the DMP. A novel D-latch architecture integrated with ‘OR' logic is proposed to decrease the complexity of the circuit. A divided-by-16/17 DMP for application in a digital video broadcasting-terrestrial receiver is realized with a TSMC 0.18μm mixed-signal CMOS process. The programmable & pulse swallow divider in this receiver is designed with a 0.18μm CMOS standard cell library and realized in the same process. The measured results show that the DMP has an output jitter of less than 0.03% and works well with the programmable & pulse swallow divider.展开更多
Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based ...Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.展开更多
The implementation of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for digital video broadcastingterrestrial (DVB-T) and other modem communi...The implementation of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for digital video broadcastingterrestrial (DVB-T) and other modem communication systems, is presented. By cooperating with a dual-modulus prescaler, this divider can realize an integer frequency division from 926 to 1 387. Besides the traditional standard cell design flow, such as logic synthesis, placement and routing, the interactions between front-end and back-end are also considered to optimize the design flow under deep submicron technology. By back-annotating the back-end information to front-end design, a custom wire-load model is created which is more practical compared with the default model. This divider has been fabricated in TSMC 0. 18μm CMOS technology using Artisan standard cell library. The chip area is 675 μm × 475 μm and the power consumption is about 2 mW under a 1.8 V power supply. Measurement results show that it works correctly and can realize a frequency division with high precision.展开更多
The design of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for transmitter and receiver in IEEE 802. 11 a standard, is investigated. The main ...The design of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for transmitter and receiver in IEEE 802. 11 a standard, is investigated. The main steps in very large-scale integration (VLSI) design flow such as logic synthesis, floorplan and placement & routing (P & R) are introduced. By back-annotating the back-end information to the front-end design, the custom wire-load model is created and used for optimizing the design flow under deep submicron technology. The programmable frequency divider is implemented based on Artisan TSMC (Taiwan Semicoductor Manufacturing Co. Ltd. )0. 18μm CMOS (complementary metal-oxide-semiconductor) standard cells and fabricated. The Chip area is 1 360. 5μm^2 and can work in the range of 100 to 200 MHz. The measurement results indicate that the design conforms to the frequency division precision.展开更多
文摘A programmable multi-modulus frequency divider is designed and implemented in a 0. 35μm CMOS process. The multi-modulus frequency divider is a single chip with two dividers in series,which are divided by 4 or 5 prescaler and by 128-255 multi-modulus frequency divider. In the circuit design, power and speed trade-offs are analyzed for the prescaler, and power optimization techniques are used according to the input frequency of each divider cell for the 128-255 multimodulus frequency divider. The chip is designed with ESD protected I/O PAD. The dividers chain can work as high as 2.4GHz with a single ended input signal and beyond 2.6GHz with differential input signals. The dual-modulus prescaler consumes 11mA of current while the 128-255 multi-modulus frequency divider consumes 17mA of current with a 3.3V power supply. The core area of the die without PAD is 0.65mm × 0.3mm. This programmable multi-modulus frequency divider can be used for 2.4GHz ISM band PLL-based frequency synthesizers. To our knowledge, this is the first reported multi-modulus frequency divider with this structure in China.
文摘An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods of high frequency analog circuit and digital logical synthesis are adopted respectively. Using a DMP high speed, lower jitter and lower power dissipation are obtained,and output frequency of 133.0MHz of the DMP working at divide-by-8 shows an RMS jitter less than 2ps. The flexibility and reusability of the progrs, mmable divider is high;its use could be extended to many complicated frequency synthesizers. By comparison,it is a better design on performance of high-frequency circuit and good design flexibility.
文摘A scheme of a frequency-hopping frequency-synthesizer applied to a Bluetooth ratio frequency (RF) front-end is presented,and design of a voltage controlled oscillator (VCO) and dual-modulus prescaler are focused on.It is fabricated in a 0.18 μm mixed-signal CMOS (complementary metal-oxide-semiconductor transistor) process.The power dissipation of VCO is low and a stable performance is gained.The measured phase noise of VCO at 2.4 GHz is less than -114.32 dBc/Hz.The structure of the DMP is optimized and a novel D-latch integrated with "OR" logic gate is used.The measured results show that the chip can work well under a 1.8 V power supply.The power dissipation of the core part in a dual modulus prescaler is only 5.76 mW.An RMS jitter of 2 ps is measured on the output signal at 118.3 MHz.It is less than 0.02% of the clock period.
基金supported by the National High-Tech Research and Development Program of China(Grant No.2006AA06Z202)the Open Fund of the Key Laboratory of Geophysical Exploration of CNPC(Grant No.GPKL0802)+1 种基金the Graduate Student Innovation Fund of China University of Petroleum(East China)(Grant No.S2008-1)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0845)
文摘To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.
文摘Dual-modulus prescalers (DMP) for RF receivers are studied. An improved D-latch is proposed to increase the speed and the driving capability of the DMP. A novel D-latch architecture integrated with ‘OR' logic is proposed to decrease the complexity of the circuit. A divided-by-16/17 DMP for application in a digital video broadcasting-terrestrial receiver is realized with a TSMC 0.18μm mixed-signal CMOS process. The programmable & pulse swallow divider in this receiver is designed with a 0.18μm CMOS standard cell library and realized in the same process. The measured results show that the DMP has an output jitter of less than 0.03% and works well with the programmable & pulse swallow divider.
基金supported by the China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2011ZX05004-003)the Basic Research Programs of CNPC during the 12th Five-Year Plan Period (NO.2011A-3603)+1 种基金the Natural Science Foundation of China (No.41104066)the RIPED Young Professional Innovation Fund (NO.2010-13-16-02, 2010-A-26-02)
文摘Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.
基金The National Natural Science Foundation of China(No.60472057)
文摘The implementation of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for digital video broadcastingterrestrial (DVB-T) and other modem communication systems, is presented. By cooperating with a dual-modulus prescaler, this divider can realize an integer frequency division from 926 to 1 387. Besides the traditional standard cell design flow, such as logic synthesis, placement and routing, the interactions between front-end and back-end are also considered to optimize the design flow under deep submicron technology. By back-annotating the back-end information to front-end design, a custom wire-load model is created which is more practical compared with the default model. This divider has been fabricated in TSMC 0. 18μm CMOS technology using Artisan standard cell library. The chip area is 675 μm × 475 μm and the power consumption is about 2 mW under a 1.8 V power supply. Measurement results show that it works correctly and can realize a frequency division with high precision.
基金The National Natural Science Foundation of China(No60472057)
文摘The design of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for transmitter and receiver in IEEE 802. 11 a standard, is investigated. The main steps in very large-scale integration (VLSI) design flow such as logic synthesis, floorplan and placement & routing (P & R) are introduced. By back-annotating the back-end information to the front-end design, the custom wire-load model is created and used for optimizing the design flow under deep submicron technology. The programmable frequency divider is implemented based on Artisan TSMC (Taiwan Semicoductor Manufacturing Co. Ltd. )0. 18μm CMOS (complementary metal-oxide-semiconductor) standard cells and fabricated. The Chip area is 1 360. 5μm^2 and can work in the range of 100 to 200 MHz. The measurement results indicate that the design conforms to the frequency division precision.