期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于类频繁模式树的关联分类 被引量:3
1
作者 高原 耿国华 周明全 《小型微型计算机系统》 CSCD 北大核心 2008年第10期1900-1902,共3页
提出一种新的基于类频繁模式树的关联分类算法CFPC(Class FP-tree based Classifier).该方法基于FP-tree实现,无需生成庞大的候选项目集;依据记录的分类属性进行指导性划分,并使用类支持度进行记录项的分类剪枝,生成类模式树,避免了小... 提出一种新的基于类频繁模式树的关联分类算法CFPC(Class FP-tree based Classifier).该方法基于FP-tree实现,无需生成庞大的候选项目集;依据记录的分类属性进行指导性划分,并使用类支持度进行记录项的分类剪枝,生成类模式树,避免了小数据类别集上的强关联模式遗漏;挖掘出的规则形成分类器,用于类标号未知的记录的区分.试验结果表明CFPC的正确性和有效性. 展开更多
关键词 据挖掘 频繁模式数 关联分类
下载PDF
Fast FP-Growth for association rule mining 被引量:1
2
作者 杨明 杨萍 +1 位作者 吉根林 孙志挥 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期320-323,共4页
In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not cons... In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient. 展开更多
关键词 data mining frequent itemsets association rules frequent pattern tree(FP-tree)
下载PDF
SWFP-Miner: an efficient algorithm for mining weighted frequent pattern over data streams
3
作者 Wang Jie Zeng Yu 《High Technology Letters》 EI CAS 2012年第3期289-294,共6页
Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted freque... Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner. 展开更多
关键词 weighted frequent pattern (WFP) mining data streams data mining slidingwindow SWFP-Miner
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部