提出一种新的基于类频繁模式树的关联分类算法CFPC(Class FP-tree based Classifier).该方法基于FP-tree实现,无需生成庞大的候选项目集;依据记录的分类属性进行指导性划分,并使用类支持度进行记录项的分类剪枝,生成类模式树,避免了小...提出一种新的基于类频繁模式树的关联分类算法CFPC(Class FP-tree based Classifier).该方法基于FP-tree实现,无需生成庞大的候选项目集;依据记录的分类属性进行指导性划分,并使用类支持度进行记录项的分类剪枝,生成类模式树,避免了小数据类别集上的强关联模式遗漏;挖掘出的规则形成分类器,用于类标号未知的记录的区分.试验结果表明CFPC的正确性和有效性.展开更多
In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not cons...In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient.展开更多
Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted freque...Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner.展开更多
文摘提出一种新的基于类频繁模式树的关联分类算法CFPC(Class FP-tree based Classifier).该方法基于FP-tree实现,无需生成庞大的候选项目集;依据记录的分类属性进行指导性划分,并使用类支持度进行记录项的分类剪枝,生成类模式树,避免了小数据类别集上的强关联模式遗漏;挖掘出的规则形成分类器,用于类标号未知的记录的区分.试验结果表明CFPC的正确性和有效性.
文摘In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient.
文摘Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner.