Spectrum sharing for efficient reuse of licensed spectrum is an important concept for cognitive radio technologies.In a spectrum-sharing system(SSS),deploying the antennas in a distributed manner can offer a new spati...Spectrum sharing for efficient reuse of licensed spectrum is an important concept for cognitive radio technologies.In a spectrum-sharing system(SSS),deploying the antennas in a distributed manner can offer a new spatial dimension for the efficient reuse of licensed frequency bands.To improve the whole performance of multiple secondary users(SUs),this paper addresses the problem of coordinated multi-SU spectrum sharing in a distributed antenna-based SSS.By adopting the Hungarian method,the primal decomposition method and pricing policy,we propose a coordinated multi-user transmission scheme,so as to maximize the sum-rate of SUs.Simulation results show that the proposed method can significantly enhance the system performance,and the computational complexity is low.展开更多
The integration of cognitive radio and Ultra wideband (UWB) networks has attracted lots of research interests. Cognitive UWB networks not only provide very high data rates but also guarantee the uninterrupted communic...The integration of cognitive radio and Ultra wideband (UWB) networks has attracted lots of research interests. Cognitive UWB networks not only provide very high data rates but also guarantee the uninterrupted communication of primary system operated in the same frequency band. In this work, the problem of the capacity analyses of cognitive UWB networks is investigated. Different from the conventional cognitive spectrum sharing model which can only utilize the idle spectrum hole, the cognitive UWB system can operate adaptively based on spectrum sensing results. Taking into account several factors such as the transmission power constraint of UWB, the interference constraint of the receivers in primary systems, the secondary UWB network capacity problem is modeled as a convex optimization problem over the transmission power. The optimal power allocation strategy and algorithm are derived based on this optimization problem. Two cases (Perfect Spectrum Sensing and Imperfect Spectrum Sensing) are studied in the paper. Numerical simulation results show that the proposed adaptive power allocationscheme improves the ergodic and outage capacity under both transmission power and interference constraints compared with constant transmission power scheme.展开更多
基金supported in part by the National Science Foundation of China for Young Scholars under grant No.61201186The National Basic Research Program undergrant No.2012AA01A502+5 种基金National Natural Science Foundation of China under grant No.61201192National S&T Major Project under grant No.2014ZX03003003-002Tsinghua-HUAWEI Joint R&D on Soft Defined Protocol StackTsinghua-HUAWEI Joint Research on 5G Air Interface TechnicalTsinghua-Qualcom joint research programIndependent innovation on Future Virtualization Platform under grant No.015Z02-3
文摘Spectrum sharing for efficient reuse of licensed spectrum is an important concept for cognitive radio technologies.In a spectrum-sharing system(SSS),deploying the antennas in a distributed manner can offer a new spatial dimension for the efficient reuse of licensed frequency bands.To improve the whole performance of multiple secondary users(SUs),this paper addresses the problem of coordinated multi-SU spectrum sharing in a distributed antenna-based SSS.By adopting the Hungarian method,the primal decomposition method and pricing policy,we propose a coordinated multi-user transmission scheme,so as to maximize the sum-rate of SUs.Simulation results show that the proposed method can significantly enhance the system performance,and the computational complexity is low.
基金supported by following projects:NSFC (No. 60432040, 60972079)Beijing Natural Science Foundation (No. 4052021)+1 种基金The Research Fund for the Doctoral Program of Higher Education(No.20060013008, 200700130293)UWB-ITRC Inha University, Korea,and iCHIP Project financed by Italian Ministry of Foreign Affairs,And it is partly supported by Project iCHIP financed by Italian Ministry of Foreign Affairs
文摘The integration of cognitive radio and Ultra wideband (UWB) networks has attracted lots of research interests. Cognitive UWB networks not only provide very high data rates but also guarantee the uninterrupted communication of primary system operated in the same frequency band. In this work, the problem of the capacity analyses of cognitive UWB networks is investigated. Different from the conventional cognitive spectrum sharing model which can only utilize the idle spectrum hole, the cognitive UWB system can operate adaptively based on spectrum sensing results. Taking into account several factors such as the transmission power constraint of UWB, the interference constraint of the receivers in primary systems, the secondary UWB network capacity problem is modeled as a convex optimization problem over the transmission power. The optimal power allocation strategy and algorithm are derived based on this optimization problem. Two cases (Perfect Spectrum Sensing and Imperfect Spectrum Sensing) are studied in the paper. Numerical simulation results show that the proposed adaptive power allocationscheme improves the ergodic and outage capacity under both transmission power and interference constraints compared with constant transmission power scheme.