期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于历史运动特征约束和SVM频谱分类的被动声呐目标关联跟踪方法 被引量:4
1
作者 钱宇宁 陈亚伟 李归 《电子与信息学报》 EI CSCD 北大核心 2023年第8期2991-3001,共11页
针对航迹交叉条件下被动声呐目标跟踪困难的问题,该文将现有运动特征关联方法和信号特征辅助关联方法进行改进融合,提出一种基于历史运动特征约束和支持向量机(His-SVM)频谱分类的被动声呐目标关联跟踪方法。首先,利用目标的历史航迹点... 针对航迹交叉条件下被动声呐目标跟踪困难的问题,该文将现有运动特征关联方法和信号特征辅助关联方法进行改进融合,提出一种基于历史运动特征约束和支持向量机(His-SVM)频谱分类的被动声呐目标关联跟踪方法。首先,利用目标的历史航迹点提取历史方位变化率,作为重合条件下点航迹关联的主要特征;其次,将方位靠近目标的点迹关联问题转化为点迹频谱的分类问题,利用目标航迹点频谱训练的SVM模型完成待关联点迹频谱的分类,根据分类结果实现方位靠近目标的点航迹关联;最后,将两种方法有机融合,构建了被动声呐交叉重合目标关联跟踪的算法框架。仿真实验结果表明,该算法能够有效完成靠近目标的点迹分类和交叉重合目标的关联跟踪,其跟踪性能优于传统运动特征关联跟踪算法。 展开更多
关键词 被动声呐 目标关联跟踪 历史运动特征 SVM频谱分类
下载PDF
自噪声监测和故障噪声探测自动化 被引量:1
2
作者 唐红军(译) 伏同先(校) 《国外舰船工程》 2005年第9期3-10,共8页
潜艇和水面舰船常常发出异常的噪声,这些未被发现和未经纠正的故障噪声,对被动声呐而言,是很容易探测到的信号。依靠人对噪声监测系统的观察,注意声被探测性的变化,只有在传感器数量少,无故障噪声状态的情况少时才现实。如果对自... 潜艇和水面舰船常常发出异常的噪声,这些未被发现和未经纠正的故障噪声,对被动声呐而言,是很容易探测到的信号。依靠人对噪声监测系统的观察,注意声被探测性的变化,只有在传感器数量少,无故障噪声状态的情况少时才现实。如果对自噪声监测有用的每一个传感器都要使用,故障噪声的探测就必须实现自动化。为了开发可靠的自动化系统,需要有大量包含了全部传感器所有可能的无故障噪声状态数据的数据库。遗憾的是,现有的声数据记录系统还没有足够的能力在海上长期不间断地大量搜集传感器样本数据。本文介绍了我们正在研制的,名为ASDIC(声特征信号数据和ISCMMS数据搜集)的数据记录器和故障噪声探测系统,该系统将数据存储到大容量的硬盘中。目前我们采用ASDIC建立了自噪声数据库,以能自动探测故障噪声。 展开更多
关键词 故障噪声 度量标准 频谱分类
下载PDF
NETWORK ANALYSIS OF TERRORIST ACTIVITIES 被引量:2
3
作者 FU Julei FAN Ying +1 位作者 WANG Yang WANG Shouyang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第6期1079-1094,共16页
This paper uses an extensive network approach to "East Turkistan" activities by building both the one-mode and the bipartite networks for these activities.In the one-mode network,centrality analysis and spec... This paper uses an extensive network approach to "East Turkistan" activities by building both the one-mode and the bipartite networks for these activities.In the one-mode network,centrality analysis and spectrum analysis are used to describe the importance of each vertex.On this basis,two types of core vertices——The center of communities and the intermediary vertices among communities— are distinguished.The weighted extreme optimization(WEO) algorithm is also applied to detect communities in the one-mode network.In the "terrorist-terrorist organization" bipartite network,the authors adopt centrality analysis as well as clustering analysis based on the original bipartite network in order to calculate the importance of each vertex,and apply the edge clustering coefficient algorithm to detect the communities.The comparative and empirical analysis indicates that this research has been proved to be an effective way to identify the core members,key organizations,and communities in the network of "East Turkistan" terrorist activity.The results can provide a scientific basis for the analysis of "East Turkistan" terrorist activity,and thus provide decision support for the real work of "anti-terrorism". 展开更多
关键词 ANTI-TERRORISM complex networks terrorist activity network vertex centrality.
原文传递
Classification of hyperspectral remote sensing images using frequency spectrum similarity 被引量:10
4
作者 WANG Ke GU XingFa +3 位作者 YU Tao MENG QingYan ZHAO LiMin FENG Li 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第4期980-988,共9页
An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discre... An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discrete signal,and the frequency spectrum is obtained using discrete Fourier transform.The discrepancy of frequency spectrum between ground objects' spectral signatures is visible,thus the difference between frequency spectra of reference and target spectral signature is used to measure the spectral similarity.Canberra distance is introduced to increase the contribution from higher frequency components.Then,the number of harmonics involved in the proposed algorithm is determined after analyzing the frequency spectrum energy cumulative distribution function of ground object.In order to evaluate the performance of the proposed algorithm,two hyperspectral remote sensing images are adopted as experimental data.The proposed algorithm is compared with spectral angle mapper (SAM),spectral information divergence (SID) and Euclidean distance (ED) using the product accuracy,user accuracy,overall accuracy,average accuracy and Kappa coefficient.The results show that the proposed algorithm can be applied to hyperspectral image classification effectively. 展开更多
关键词 hyperspectral image spectral similarity frequency spectrum feature remote sensing CLASSIFICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部