This paper uses an extensive network approach to "East Turkistan" activities by building both the one-mode and the bipartite networks for these activities.In the one-mode network,centrality analysis and spec...This paper uses an extensive network approach to "East Turkistan" activities by building both the one-mode and the bipartite networks for these activities.In the one-mode network,centrality analysis and spectrum analysis are used to describe the importance of each vertex.On this basis,two types of core vertices——The center of communities and the intermediary vertices among communities— are distinguished.The weighted extreme optimization(WEO) algorithm is also applied to detect communities in the one-mode network.In the "terrorist-terrorist organization" bipartite network,the authors adopt centrality analysis as well as clustering analysis based on the original bipartite network in order to calculate the importance of each vertex,and apply the edge clustering coefficient algorithm to detect the communities.The comparative and empirical analysis indicates that this research has been proved to be an effective way to identify the core members,key organizations,and communities in the network of "East Turkistan" terrorist activity.The results can provide a scientific basis for the analysis of "East Turkistan" terrorist activity,and thus provide decision support for the real work of "anti-terrorism".展开更多
An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discre...An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discrete signal,and the frequency spectrum is obtained using discrete Fourier transform.The discrepancy of frequency spectrum between ground objects' spectral signatures is visible,thus the difference between frequency spectra of reference and target spectral signature is used to measure the spectral similarity.Canberra distance is introduced to increase the contribution from higher frequency components.Then,the number of harmonics involved in the proposed algorithm is determined after analyzing the frequency spectrum energy cumulative distribution function of ground object.In order to evaluate the performance of the proposed algorithm,two hyperspectral remote sensing images are adopted as experimental data.The proposed algorithm is compared with spectral angle mapper (SAM),spectral information divergence (SID) and Euclidean distance (ED) using the product accuracy,user accuracy,overall accuracy,average accuracy and Kappa coefficient.The results show that the proposed algorithm can be applied to hyperspectral image classification effectively.展开更多
基金supported by the Natural Science Foundation of China under Grants Nos.70771011 and 61174150the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-09-0228+1 种基金Ph.D.Programs Foundation of Ministry of Education of China under Grant No.20110003110027the China Scholarship Council(CSC)
文摘This paper uses an extensive network approach to "East Turkistan" activities by building both the one-mode and the bipartite networks for these activities.In the one-mode network,centrality analysis and spectrum analysis are used to describe the importance of each vertex.On this basis,two types of core vertices——The center of communities and the intermediary vertices among communities— are distinguished.The weighted extreme optimization(WEO) algorithm is also applied to detect communities in the one-mode network.In the "terrorist-terrorist organization" bipartite network,the authors adopt centrality analysis as well as clustering analysis based on the original bipartite network in order to calculate the importance of each vertex,and apply the edge clustering coefficient algorithm to detect the communities.The comparative and empirical analysis indicates that this research has been proved to be an effective way to identify the core members,key organizations,and communities in the network of "East Turkistan" terrorist activity.The results can provide a scientific basis for the analysis of "East Turkistan" terrorist activity,and thus provide decision support for the real work of "anti-terrorism".
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2010CB950800)International S&T Cooperation Program of China (Grant No. 2010DFA21880)China Postdoctoral Science Foundation (Grant No. 2012M510053)
文摘An algorithm of hyperspectral remote sensing images classification is proposed based on the frequency spectrum of spectral signature.The spectral signature of each pixel in the hyperspectral image is taken as a discrete signal,and the frequency spectrum is obtained using discrete Fourier transform.The discrepancy of frequency spectrum between ground objects' spectral signatures is visible,thus the difference between frequency spectra of reference and target spectral signature is used to measure the spectral similarity.Canberra distance is introduced to increase the contribution from higher frequency components.Then,the number of harmonics involved in the proposed algorithm is determined after analyzing the frequency spectrum energy cumulative distribution function of ground object.In order to evaluate the performance of the proposed algorithm,two hyperspectral remote sensing images are adopted as experimental data.The proposed algorithm is compared with spectral angle mapper (SAM),spectral information divergence (SID) and Euclidean distance (ED) using the product accuracy,user accuracy,overall accuracy,average accuracy and Kappa coefficient.The results show that the proposed algorithm can be applied to hyperspectral image classification effectively.