期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种高效的频集挖掘算法 被引量:2
1
作者 罗可 张学茂 《长沙理工大学学报(自然科学版)》 CAS 2006年第3期84-90,共7页
频集挖掘是关联规则挖掘的关键步骤,它对强规则、相关分析和时间序列有着重要的意义.常用的频集算法包括Apriori和FP-G rowth.为了提高算法效率,提出了一种基于D iffset的混合算法———D iffsetHybrid,该算法根据数据集的稀疏程度决定... 频集挖掘是关联规则挖掘的关键步骤,它对强规则、相关分析和时间序列有着重要的意义.常用的频集算法包括Apriori和FP-G rowth.为了提高算法效率,提出了一种基于D iffset的混合算法———D iffsetHybrid,该算法根据数据集的稀疏程度决定采用D iffset的某种形式来挖掘频集,减少了存储空间,提高了算法效率.试验表明,该算法对于稀疏数据集和稠密数据集都有良好的计算性能. 展开更多
关键词 频集挖掘 Diffset算法 DiffsetHybrid算法
下载PDF
时兴频集挖掘算法的辨析
2
作者 吕锋 陈华胜 陈晓 《武汉理工大学学报》 CAS CSCD 2004年第6期59-62,共4页
研究了当前几种时兴的频集挖掘算法 (Apriori,DF,FP- growth和 DCI)及其技术特点 ,并对其分类和界定适用范围。对其算法复杂性及时空执行效率等性能指标进行了定性和定量的综合分析。研究的结果对于在各种应用环境下的关联挖掘系统的设... 研究了当前几种时兴的频集挖掘算法 (Apriori,DF,FP- growth和 DCI)及其技术特点 ,并对其分类和界定适用范围。对其算法复杂性及时空执行效率等性能指标进行了定性和定量的综合分析。研究的结果对于在各种应用环境下的关联挖掘系统的设计具有参考价值。 展开更多
关键词 频集挖掘 APRIORI DF FP-GROWTH DCI
下载PDF
A novel algorithm for frequent itemset mining in data warehouses 被引量:2
3
作者 徐利军 谢康林 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第2期216-224,共9页
Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. Multi... Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. MultiClose respectively computes the results in single dimension tables and merges the results with a very efficient approach. Close itemsets technique is used to improve the performance of the algorithm. The authors propose an efficient implementation for star schemas in which their al- gorithm outperforms state-of-the-art single-table algorithms. 展开更多
关键词 Frequent itemset Close itemset Star schema Dimension table Fact table
下载PDF
Frequent item sets mining from high-dimensional dataset based on a novel binary particle swarm optimization 被引量:2
4
作者 张中杰 黄健 卫莹 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1700-1708,共9页
A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial partic... A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE. 展开更多
关键词 data mining frequent item sets particle swarm optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部