Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose ...Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.展开更多
Vortexing limestone injection into furnace combined with calcium lime hydration in the downstream is the most promising technology for controlling SO 2 emission. Particle imaging velocimetry (PIV) is used to measure ...Vortexing limestone injection into furnace combined with calcium lime hydration in the downstream is the most promising technology for controlling SO 2 emission. Particle imaging velocimetry (PIV) is used to measure the gas liquid solid three phase flow field in a reactor. By image processing based on newly developed software, the number concentrations of sorbent particles and water droplets are presented. The measuring results are very helpful for better understanding the desulfurization mechanism and optimizing configurational and operational parameters in the hydration reactor.展开更多
Behavior of catalytic cracking reactions of particle cluster in fluid catalytic cracking (FCC) riser reactors was numerically analyzed using a four-lump mathematical model. Effects of the cluster porosity, inlet gas...Behavior of catalytic cracking reactions of particle cluster in fluid catalytic cracking (FCC) riser reactors was numerically analyzed using a four-lump mathematical model. Effects of the cluster porosity, inlet gas velocity and temperature, and coke deposition on cracking reactions of the cluster were investigated. Distributions of temperature, gases, and gasoline from both catalyst particle cluster and an isolated catalyst particle are presented. The reaction rates from vacuum gas oil (VGO) to gasoline, gas and coke of individual particle in the cluster are higher than those of the isolated particle, but it reverses for the reaction rates from gasoline to gas and coke. Less gasoline is produced by particle clustering. Simulated results show that the produced mass fluxes of gas and gasoline increase with the operating temperature and molar concentration of VGO, and decrease due to the formation of coke.展开更多
In this study, a lab-scale upflow anaerobic sludge blanket(UASB) reactor was applied to studying the high-rate nitrogen removal of granule-based anammox process. The nitrogen removal rate(NRR) finally improved to 15.7...In this study, a lab-scale upflow anaerobic sludge blanket(UASB) reactor was applied to studying the high-rate nitrogen removal of granule-based anammox process. The nitrogen removal rate(NRR) finally improved to 15.77 kg/m3/d by shortening hydraulic retention time(HRT) to 1.06 h. Well-shaped red anammox granules were extensively enriched inside the reactor. The results of nitrogen removal kinetics indicated that the present bioreactor has great nitrogen removal potential, because the maximum rate of substrate utilization(Umax) predicted by Stover-Kincannon model is suggested as 55.68 kg/(m3·d). Analysis of the microbial community showed that the anammox genus Candidatus Kuenenia dominated the bacterial communities. The relative abundance of Candidatus Kuenenia rose from 12.29% to 36.95% after progressively shorter HRT and higher influent substrate concentrations, illustrating the stability of nitrogen removal performance and biomass enrichment offered by the UASB in carrying out high-rate anammox process.展开更多
To investigate the shut-cut nitrification characteristics of aerobic granule,an aerobic granular sequencing batch airlift reactor(AG-SBAR) was carried out with mixed carbon sources of sodium acetate and glucose at 10&...To investigate the shut-cut nitrification characteristics of aerobic granule,an aerobic granular sequencing batch airlift reactor(AG-SBAR) was carried out with mixed carbon sources of sodium acetate and glucose at 10±1 ℃.Results indicated that ammonia oxidizing bacteria was accumulated inside the aerobic granules and the reactor performed stably with shut-cut nitrification for a long term at low temperature.During the stable operation period,the effluent ammonia nitrogen concentration was maintained at 13.6 mg/L without nitrate and nitrite when the COD/N ratio was 20:1.However,the effluent concentration of ammonia nitrogen was below 0.5 mg/L with effluent nitrosation ratio of 96.7% on average when the COD/N ratio was reduced to 15:1 and 10:1.And the effluent phosphorus concentration was less than 0.4 mg/L during the stable period with the sludge retention time of 30 d.The phosphorus removal efficiency was not strongly influenced by the adjustment of COD/N ratio in this experiment.The removal efficiencies for COD,NH4+-N and PO43--P were 91.3%-94.6%,97.9%-99.7% and 97.1%-99.5%,respectively.展开更多
We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To impro...We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To improve the energy transfer efficiency,UCNPs and CdS nanoparticles were bound in close proximity to each other within the SiO2matrix.β‐NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)core–shell nanoparticles were used as nanotransducers for near infrared light.These nanoparticles exhibited enhanced upconversion fluorescence compared withβ‐NaYF4:Yb(30%),Tm(0.5%)orβ–NaYF4:Yb(30%),Tm(0.5%)@NaYF4nanoparticles.The morphologies,size and chemical compositions have been extensively investigated using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),X‐ray diffraction(XRD)and X‐ray photoelectron spectra(XPS),respectively.The TEM images showed that the TiO2composite nanotubes were embedded with a large amount of UCNPs and CdS nanoparticles.The composite TiO2nanotubes degraded more than90%of rhodamine B(RhB)dye during20min of irradiation by simulated solar light.In particular,more than50%of RhB was decomposed in70min,under irradiation of near infrared light(NIR).This high degradation was attributed to the full spectrum absorption of solar light,and the enhanced transfer efficiency for near infrared light.The as‐prepared nanostructures can harness solar energy,and provide an alternative to overcome energy shortages and environmental protection.展开更多
Raw corn starch granules were hydrolysized by glucoamylase in a chemostat. The hydro- lysis of three different-sized granules shows that smaller granules undergo more hydrolyzation than larger ones. After 78 h, 9700 o...Raw corn starch granules were hydrolysized by glucoamylase in a chemostat. The hydro- lysis of three different-sized granules shows that smaller granules undergo more hydrolyzation than larger ones. After 78 h, 9700 of the granules was hydrolysized with diameter between 0.15 mm and 0.3 mm at 50 ℃. When corn starch concentration increased from 100 g/L to 250 g/L, the amount of reducing sugar produced was proportional to the initial substrate concentration and no substrate inhibition phenomenon appeared. In order to study the product inhibition exactly, the product from hydrolysis reaction itself was added into the hydrolysis system at the beginning of starch hydrolysis. Product inhibition with different quantities of product added were studied in the initial several hours, during which period enzyme inactivation could be neglected and product inhibition could be studied separately. The experiments indicate that product inhibition happens when the additional quantity exceeds 9.56 g/L.展开更多
The electrical potential inside a cylinder with a space charge layer is used to express the neck potential barrier of nano-SnO2 gas elements, and the neck-controlled sensitivity and the grain size effect are studied. ...The electrical potential inside a cylinder with a space charge layer is used to express the neck potential barrier of nano-SnO2 gas elements, and the neck-controlled sensitivity and the grain size effect are studied. It is shown that the sensing properties are influenced by the microstructural features, such as the grain size, the geometry and connectivity between grains, and that the neck controlled sensitivity alone is higher than the neck-grain controlled sensitivity and the difference between the neck controlled sensitivity and the neck-grain controlled sensitivity is large in the high sensitivity range for nano-SnO2 gas elements, which suggests a possible approach to the improvement of the sensitivity of a sensor by decreasing the number of necks of a nano-grain SnO2 gas element.展开更多
The microstructure and properties of the coke samples collected from 4 different wall regions of the cyclone in the reactor of a residue fluid catalytic cracking unit(RFCCU) were analyzed by using the scanning-electro...The microstructure and properties of the coke samples collected from 4 different wall regions of the cyclone in the reactor of a residue fluid catalytic cracking unit(RFCCU) were analyzed by using the scanning-electron microscope(SEM), and the possible coke formation processes were investigated as well. The results showed that some of the heavy nonvolatile oil droplets entrained in the flowing oil and gas mixture could possibly deposit or collide on the walls by gravity settling or turbulence diffusion, and then were gradually carbonized into solid coke by condensing and polymerization along with dehydrogenation. Meanwhile some of fine catalyst particles also built up and integrated into the solid coke. The coke can be classified into two types, namely, the hard coke and the soft coke, according to its property, composition and microstructure. The soft coke is formed in the oil and gas mixture's stagnant region where the oil droplets and catalyst particles are freely settled on the wall. The soft coke appears to be loose and contains lots of large catalyst particles. However, the hard coke is formed in the oil and gas mixture's flowing region where the oil droplets and catalyst particles diffuse towards the wall. This kind of coke is nonporous and very hard, which contains a few fine catalyst particles. Therefore, it is clear that the oil and gas mixture not only carries the oil droplets and catalyst particles, but also has the effects on their deposition on the wall, which can influence the composition and characteristics of deposited coke.展开更多
One of the most important properties of the torrefied pellets, along with high calorific value, is their hydrophobicity. Inability to absorb moisture and self-destruct under its influence determine possibility of usin...One of the most important properties of the torrefied pellets, along with high calorific value, is their hydrophobicity. Inability to absorb moisture and self-destruct under its influence determine possibility of using of pellets in the pyrolysis reactor. For the technology of two-stage thermal processing of biomass, developed at the Joint Institute for High Temperatures, the amount of synthesis gas which can be obtained from one kilogram of torrefied pellets is also important. A construction of the pilot torrefaction reactor powered by flue gas is shown. The results of experimental investigations of hydrophobicity of torrefied pellets produced by the reactor and quantity of synthesis gas which can be obtained by two-stage thermal processing of the pellets are presented. It is shown that torrefaction allows simplifying the process of conversion of pellets into synthesis gas without significant reduction in the volume of the gas.展开更多
Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetect...Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetector based on the crystalline PbS quantum dots(QDs)/ZnO nanoparticles(NPs) heterostructure was proposed. The photodetector exhibits a broadband response from ultraviolet-visible(UV-Vis)to near infrared detector(NIR) range with a remarkable current on/off ratio of 7.08×10^3under 375 nm light illumination.Compared with pure ZnO NPs, the heterostructure photodetector shows the three orders of magnitude higher responsivity in Vis and NIR range, and maintains its performance in the UV range simultaneously. The photodetector demonstrates a high responsivity and detectivity of4.54 A W-1and 3.98×10^12Jones. In addition, the flexible photodetectors exhibit excellent durability and stability even after hundreds of times bending. This work paves a promising way for constructing next-generation high-performance flexible and broadband optoelectronic devices.展开更多
基金The Special Funds for State Key Projects for Fun- damental Research (G1999022201-04).
文摘Application of particle image velocity (PIV) techniques for measuringparticle size distribution and total number in an activation chamber of desulfurization system isintroduced. Watersheld algorithm is used to choose the suitable initial gray level threshold whichis used to change the gray level images taken by PIV to black and white ones, then every particle inan image is isolated totally. For every isolating particle, its contour is tracked by the edgeenhancement filter function and kept by Freeman s chain code. Based on a set of particle s chincode, its size and size distribution are calculated and sorted. Finally, the experimental data ofcalcium particles and water drops, separately injected into the activation chamber, and the erroranalysis of data are given out.
文摘Vortexing limestone injection into furnace combined with calcium lime hydration in the downstream is the most promising technology for controlling SO 2 emission. Particle imaging velocimetry (PIV) is used to measure the gas liquid solid three phase flow field in a reactor. By image processing based on newly developed software, the number concentrations of sorbent particles and water droplets are presented. The measuring results are very helpful for better understanding the desulfurization mechanism and optimizing configurational and operational parameters in the hydration reactor.
基金Supported by the National Natural Science Foundation of China (50776023) and NSFC-Petro China (20490200).
文摘Behavior of catalytic cracking reactions of particle cluster in fluid catalytic cracking (FCC) riser reactors was numerically analyzed using a four-lump mathematical model. Effects of the cluster porosity, inlet gas velocity and temperature, and coke deposition on cracking reactions of the cluster were investigated. Distributions of temperature, gases, and gasoline from both catalyst particle cluster and an isolated catalyst particle are presented. The reaction rates from vacuum gas oil (VGO) to gasoline, gas and coke of individual particle in the cluster are higher than those of the isolated particle, but it reverses for the reaction rates from gasoline to gas and coke. Less gasoline is produced by particle clustering. Simulated results show that the produced mass fluxes of gas and gasoline increase with the operating temperature and molar concentration of VGO, and decrease due to the formation of coke.
基金Project(51878662)supported by the National Natural Science Foundation of ChinaProject(2017SK2420)supported by the Science and Technology of Hunan Province,ChinaProject(2019JJ20033)supported by the Distinguished Youth Natural Science Foundation of Hunan Province,China。
文摘In this study, a lab-scale upflow anaerobic sludge blanket(UASB) reactor was applied to studying the high-rate nitrogen removal of granule-based anammox process. The nitrogen removal rate(NRR) finally improved to 15.77 kg/m3/d by shortening hydraulic retention time(HRT) to 1.06 h. Well-shaped red anammox granules were extensively enriched inside the reactor. The results of nitrogen removal kinetics indicated that the present bioreactor has great nitrogen removal potential, because the maximum rate of substrate utilization(Umax) predicted by Stover-Kincannon model is suggested as 55.68 kg/(m3·d). Analysis of the microbial community showed that the anammox genus Candidatus Kuenenia dominated the bacterial communities. The relative abundance of Candidatus Kuenenia rose from 12.29% to 36.95% after progressively shorter HRT and higher influent substrate concentrations, illustrating the stability of nitrogen removal performance and biomass enrichment offered by the UASB in carrying out high-rate anammox process.
基金Sponsored by the National High Technology Research and Development Program of China (Grant No.2008AA06Z304)Key Projects in National Science & Technology Pillar Program of China (Grant No.2006BAJ08B09)+1 种基金Foundation for Innovative Research Groups of the National Natural Science Founda-tion of China (Grant No.50821002)Heilongjiang Province Key Scientific and Technological Project (Grant No.GB06C20403)
文摘To investigate the shut-cut nitrification characteristics of aerobic granule,an aerobic granular sequencing batch airlift reactor(AG-SBAR) was carried out with mixed carbon sources of sodium acetate and glucose at 10±1 ℃.Results indicated that ammonia oxidizing bacteria was accumulated inside the aerobic granules and the reactor performed stably with shut-cut nitrification for a long term at low temperature.During the stable operation period,the effluent ammonia nitrogen concentration was maintained at 13.6 mg/L without nitrate and nitrite when the COD/N ratio was 20:1.However,the effluent concentration of ammonia nitrogen was below 0.5 mg/L with effluent nitrosation ratio of 96.7% on average when the COD/N ratio was reduced to 15:1 and 10:1.And the effluent phosphorus concentration was less than 0.4 mg/L during the stable period with the sludge retention time of 30 d.The phosphorus removal efficiency was not strongly influenced by the adjustment of COD/N ratio in this experiment.The removal efficiencies for COD,NH4+-N and PO43--P were 91.3%-94.6%,97.9%-99.7% and 97.1%-99.5%,respectively.
基金supported in part by the National Natural Science Foundation of China(21471043,21304028,51403195,31501576)~~
文摘We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To improve the energy transfer efficiency,UCNPs and CdS nanoparticles were bound in close proximity to each other within the SiO2matrix.β‐NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)core–shell nanoparticles were used as nanotransducers for near infrared light.These nanoparticles exhibited enhanced upconversion fluorescence compared withβ‐NaYF4:Yb(30%),Tm(0.5%)orβ–NaYF4:Yb(30%),Tm(0.5%)@NaYF4nanoparticles.The morphologies,size and chemical compositions have been extensively investigated using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),X‐ray diffraction(XRD)and X‐ray photoelectron spectra(XPS),respectively.The TEM images showed that the TiO2composite nanotubes were embedded with a large amount of UCNPs and CdS nanoparticles.The composite TiO2nanotubes degraded more than90%of rhodamine B(RhB)dye during20min of irradiation by simulated solar light.In particular,more than50%of RhB was decomposed in70min,under irradiation of near infrared light(NIR).This high degradation was attributed to the full spectrum absorption of solar light,and the enhanced transfer efficiency for near infrared light.The as‐prepared nanostructures can harness solar energy,and provide an alternative to overcome energy shortages and environmental protection.
文摘Raw corn starch granules were hydrolysized by glucoamylase in a chemostat. The hydro- lysis of three different-sized granules shows that smaller granules undergo more hydrolyzation than larger ones. After 78 h, 9700 of the granules was hydrolysized with diameter between 0.15 mm and 0.3 mm at 50 ℃. When corn starch concentration increased from 100 g/L to 250 g/L, the amount of reducing sugar produced was proportional to the initial substrate concentration and no substrate inhibition phenomenon appeared. In order to study the product inhibition exactly, the product from hydrolysis reaction itself was added into the hydrolysis system at the beginning of starch hydrolysis. Product inhibition with different quantities of product added were studied in the initial several hours, during which period enzyme inactivation could be neglected and product inhibition could be studied separately. The experiments indicate that product inhibition happens when the additional quantity exceeds 9.56 g/L.
基金Chongqing Education Committee Foundation (No.020804)
文摘The electrical potential inside a cylinder with a space charge layer is used to express the neck potential barrier of nano-SnO2 gas elements, and the neck-controlled sensitivity and the grain size effect are studied. It is shown that the sensing properties are influenced by the microstructural features, such as the grain size, the geometry and connectivity between grains, and that the neck controlled sensitivity alone is higher than the neck-grain controlled sensitivity and the difference between the neck controlled sensitivity and the neck-grain controlled sensitivity is large in the high sensitivity range for nano-SnO2 gas elements, which suggests a possible approach to the improvement of the sensitivity of a sensor by decreasing the number of necks of a nano-grain SnO2 gas element.
基金financial support from the National Natural Science Foundation of China (No. 21176250, No. 21566038)
文摘The microstructure and properties of the coke samples collected from 4 different wall regions of the cyclone in the reactor of a residue fluid catalytic cracking unit(RFCCU) were analyzed by using the scanning-electron microscope(SEM), and the possible coke formation processes were investigated as well. The results showed that some of the heavy nonvolatile oil droplets entrained in the flowing oil and gas mixture could possibly deposit or collide on the walls by gravity settling or turbulence diffusion, and then were gradually carbonized into solid coke by condensing and polymerization along with dehydrogenation. Meanwhile some of fine catalyst particles also built up and integrated into the solid coke. The coke can be classified into two types, namely, the hard coke and the soft coke, according to its property, composition and microstructure. The soft coke is formed in the oil and gas mixture's stagnant region where the oil droplets and catalyst particles are freely settled on the wall. The soft coke appears to be loose and contains lots of large catalyst particles. However, the hard coke is formed in the oil and gas mixture's flowing region where the oil droplets and catalyst particles diffuse towards the wall. This kind of coke is nonporous and very hard, which contains a few fine catalyst particles. Therefore, it is clear that the oil and gas mixture not only carries the oil droplets and catalyst particles, but also has the effects on their deposition on the wall, which can influence the composition and characteristics of deposited coke.
文摘One of the most important properties of the torrefied pellets, along with high calorific value, is their hydrophobicity. Inability to absorb moisture and self-destruct under its influence determine possibility of using of pellets in the pyrolysis reactor. For the technology of two-stage thermal processing of biomass, developed at the Joint Institute for High Temperatures, the amount of synthesis gas which can be obtained from one kilogram of torrefied pellets is also important. A construction of the pilot torrefaction reactor powered by flue gas is shown. The results of experimental investigations of hydrophobicity of torrefied pellets produced by the reactor and quantity of synthesis gas which can be obtained by two-stage thermal processing of the pellets are presented. It is shown that torrefaction allows simplifying the process of conversion of pellets into synthesis gas without significant reduction in the volume of the gas.
基金funded by the National Natural Science Foundation of China (U1432249)the National Key R&D Program of China (2017YFA0205002)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)supported by Collaborative Innovation Center of Suzhou Nano Science & Technology and Joint International Research Laboratory of Carbon-Based Functional Materials and Devicesthe support from China Postdoctoral Science Foundation (2017M610346)Natural Science Foundation of Jiangsu Province of China (BK20170343)
文摘Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetector based on the crystalline PbS quantum dots(QDs)/ZnO nanoparticles(NPs) heterostructure was proposed. The photodetector exhibits a broadband response from ultraviolet-visible(UV-Vis)to near infrared detector(NIR) range with a remarkable current on/off ratio of 7.08×10^3under 375 nm light illumination.Compared with pure ZnO NPs, the heterostructure photodetector shows the three orders of magnitude higher responsivity in Vis and NIR range, and maintains its performance in the UV range simultaneously. The photodetector demonstrates a high responsivity and detectivity of4.54 A W-1and 3.98×10^12Jones. In addition, the flexible photodetectors exhibit excellent durability and stability even after hundreds of times bending. This work paves a promising way for constructing next-generation high-performance flexible and broadband optoelectronic devices.